These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 12873076)
1. Surface reactivity of calcium phosphate based ceramics in a cell culture system. John A; Varma HK; Kumari TV J Biomater Appl; 2003 Jul; 18(1):63-78. PubMed ID: 12873076 [TBL] [Abstract][Full Text] [Related]
2. Phase conversion of tricalcium phosphate into Ca-deficient apatite during sintering of hydroxyapatite-tricalcium phosphate biphasic ceramics. Kong YM; Kim HE; Kim HW J Biomed Mater Res B Appl Biomater; 2008 Feb; 84(2):334-9. PubMed ID: 17595029 [TBL] [Abstract][Full Text] [Related]
3. Petal-like apatite formed on the surface of tricalcium phosphate ceramic after soaking in distilled water. Lin FH; Liao CJ; Chen KS; Su JS; Lin CP Biomaterials; 2001 Nov; 22(22):2981-92. PubMed ID: 11575472 [TBL] [Abstract][Full Text] [Related]
4. Dissolution control and cellular responses of calcium phosphate coatings on zirconia porous scaffold. Kim HW; Kim HE; Salih V; Knowles JC J Biomed Mater Res A; 2004 Mar; 68(3):522-30. PubMed ID: 14762932 [TBL] [Abstract][Full Text] [Related]
5. Phenotypic expression of bone-related genes in osteoblasts grown on calcium phosphate ceramics with different phase compositions. Wang C; Duan Y; Markovic B; Barbara J; Howlett CR; Zhang X; Zreiqat H Biomaterials; 2004 Jun; 25(13):2507-14. PubMed ID: 14751735 [TBL] [Abstract][Full Text] [Related]
6. An in vitro evaluation of the Ca/P ratio for the cytocompatibility of nano-to-micron particulate calcium phosphates for bone regeneration. Liu H; Yazici H; Ergun C; Webster TJ; Bermek H Acta Biomater; 2008 Sep; 4(5):1472-9. PubMed ID: 18394980 [TBL] [Abstract][Full Text] [Related]
7. Preparation and characterization of porous apatite ceramics coated with beta-tricalcium phosphate. Ioku K; Yanagisawa K; Yamasaki N; Kurosawa H; Shibuya K; Yokozeki H Biomed Mater Eng; 1993; 3(3):137-45. PubMed ID: 8193565 [TBL] [Abstract][Full Text] [Related]
8. Transformation of biphasic calcium phosphate ceramics in vivo: ultrastructural and physicochemical characterization. Daculsi G; LeGeros RZ; Nery E; Lynch K; Kerebel B J Biomed Mater Res; 1989 Aug; 23(8):883-94. PubMed ID: 2777831 [TBL] [Abstract][Full Text] [Related]
9. Fabrication and biological characteristics of beta-tricalcium phosphate porous ceramic scaffolds reinforced with calcium phosphate glass. Cai S; Xu GH; Yu XZ; Zhang WJ; Xiao ZY; Yao KD J Mater Sci Mater Med; 2009 Jan; 20(1):351-8. PubMed ID: 18807260 [TBL] [Abstract][Full Text] [Related]
10. The effects of calcium phosphate particles on the growth of osteoblasts. Sun JS; Tsuang YH; Liao CJ; Liu HC; Hang YS; Lin FH J Biomed Mater Res; 1997 Dec; 37(3):324-34. PubMed ID: 9368137 [TBL] [Abstract][Full Text] [Related]
11. Ultrastructure of ceramic-bone interface using hydroxyapatite and beta-tricalcium phosphate ceramics and replacement mechanism of beta-tricalcium phosphate in bone. Fujita R; Yokoyama A; Nodasaka Y; Kohgo T; Kawasaki T Tissue Cell; 2003 Dec; 35(6):427-40. PubMed ID: 14580356 [TBL] [Abstract][Full Text] [Related]
12. Nano-hydroxyapatite-coated metal-ceramic composite of iron-tricalcium phosphate: Improving the surface wettability, adhesion and proliferation of mesenchymal stem cells in vitro. Surmeneva MA; Kleinhans C; Vacun G; Kluger PJ; Schönhaar V; Müller M; Hein SB; Wittmar A; Ulbricht M; Prymak O; Oehr C; Surmenev RA Colloids Surf B Biointerfaces; 2015 Nov; 135():386-393. PubMed ID: 26277713 [TBL] [Abstract][Full Text] [Related]
13. Formation of osteoclast-like cells on HA and TCP ceramics. Detsch R; Mayr H; Ziegler G Acta Biomater; 2008 Jan; 4(1):139-48. PubMed ID: 17723325 [TBL] [Abstract][Full Text] [Related]
14. Surface instability of calcium phosphate ceramics in tissue culture medium and the effect on adhesion and growth of anchorage-dependent animal cells. Suzuki T; Yamamoto T; Toriyama M; Nishizawa K; Yokogawa Y; Mucalo MR; Kawamoto Y; Nagata F; Kameyama T J Biomed Mater Res; 1997 Mar; 34(4):507-17. PubMed ID: 9054534 [TBL] [Abstract][Full Text] [Related]
15. Strontium substituted calcium phosphate biphasic ceramics obtained by a powder precipitation method. Kim HW; Koh YH; Kong YM; Kang JG; Kim HE J Mater Sci Mater Med; 2004 Oct; 15(10):1129-34. PubMed ID: 15516874 [TBL] [Abstract][Full Text] [Related]
16. The thermal stability of hydroxyapatite in biphasic calcium phosphate ceramics. Nilen RW; Richter PW J Mater Sci Mater Med; 2008 Apr; 19(4):1693-702. PubMed ID: 17899322 [TBL] [Abstract][Full Text] [Related]
17. Comparison of osteoblast-like cell responses to calcium silicate and tricalcium phosphate ceramics in vitro. Ni S; Chang J; Chou L; Zhai W J Biomed Mater Res B Appl Biomater; 2007 Jan; 80(1):174-83. PubMed ID: 16767735 [TBL] [Abstract][Full Text] [Related]
18. Surface energy of hydroxyapatite and beta-tricalcium phosphate ceramics driving serum protein adsorption and osteoblast adhesion. dos Santos EA; Farina M; Soares GA; Anselme K J Mater Sci Mater Med; 2008 Jun; 19(6):2307-16. PubMed ID: 18157507 [TBL] [Abstract][Full Text] [Related]
19. In vitro degradation, bioactivity, and cytocompatibility of calcium silicate, dimagnesium silicate, and tricalcium phosphate bioceramics. Ni S; Chang J J Biomater Appl; 2009 Aug; 24(2):139-58. PubMed ID: 18801892 [TBL] [Abstract][Full Text] [Related]
20. Characterization and in vitro evaluation of biphasic calcium pyrophosphate-tricalciumphosphate radio frequency magnetron sputter coatings. Takahashi K; van den Beucken JJ; Wolke JG; Hayakawa T; Nishiyama N; Jansen JA J Biomed Mater Res A; 2008 Mar; 84(3):682-90. PubMed ID: 17635019 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]