BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 12873132)

  • 21. Crystal structure of the caspase activator human granzyme B, a proteinase highly specific for an Asp-P1 residue.
    Estébanez-Perpiña E; Fuentes-Prior P; Belorgey D; Braun M; Kiefersauer R; Maskos K; Huber R; Rubin H; Bode W
    Biol Chem; 2000 Dec; 381(12):1203-14. PubMed ID: 11209755
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Both dimerization and interdomain processing are essential for caspase-4 activation.
    Karki P; Dahal GR; Park IS
    Biochem Biophys Res Commun; 2007 May; 356(4):1056-61. PubMed ID: 17400183
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure, stability, and chaperone function of alphaA-crystallin: role of N-terminal region.
    Kundu M; Sen PC; Das KP
    Biopolymers; 2007 Jun; 86(3):177-92. PubMed ID: 17345631
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Caspase structure, proteolytic substrates, and function during apoptotic cell death.
    Nicholson DW
    Cell Death Differ; 1999 Nov; 6(11):1028-42. PubMed ID: 10578171
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural and functional analysis of caspase active sites.
    Chéreau D; Kodandapani L; Tomaselli KJ; Spada AP; Wu JC
    Biochemistry; 2003 Apr; 42(14):4151-60. PubMed ID: 12680769
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure of the apoptotic protease-activating factor 1 bound to ADP.
    Riedl SJ; Li W; Chao Y; Schwarzenbacher R; Shi Y
    Nature; 2005 Apr; 434(7035):926-33. PubMed ID: 15829969
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Specific proteolysis of the A-kinase-anchoring protein 149 at the Asp582 residue by caspases during apoptosis.
    Yoo H; Cha HJ; Lee J; Yu EO; Bae S; Jung JH; Sohn I; Lee SJ; Yang KH; Woo SH; Seo SK; Park IC; Kim CS; Jin YW; Ahn SK
    Oncol Rep; 2008 Jun; 19(6):1577-82. PubMed ID: 18497968
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dual roles of Lys(57) at the dimer interface of human mitochondrial NAD(P)+-dependent malic enzyme.
    Hsieh JY; Liu JH; Fang YW; Hung HC
    Biochem J; 2009 May; 420(2):201-9. PubMed ID: 19236308
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NMR investigation of main-chain dynamics of the H80E mutant of bovine neurophysin-I: demonstration of dimerization-induced changes at the hormone-binding site.
    Naik MT; Lee H; Bracken C; Breslow E
    Biochemistry; 2005 Sep; 44(35):11766-76. PubMed ID: 16128578
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Caspases - an update.
    Chowdhury I; Tharakan B; Bhat GK
    Comp Biochem Physiol B Biochem Mol Biol; 2008 Sep; 151(1):10-27. PubMed ID: 18602321
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational proteomics analysis of binding mechanisms and molecular signatures of the HIV-1 protease drugs.
    Verkhivker G
    Artif Intell Med; 2009; 45(2-3):197-206. PubMed ID: 18926674
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structures of dimeric nonstandard nucleotide triphosphate pyrophosphatase from Pyrococcus horikoshii OT3: functional significance of interprotomer conformational changes.
    Lokanath NK; Pampa KJ; Takio K; Kunishima N
    J Mol Biol; 2008 Jan; 375(4):1013-25. PubMed ID: 18062990
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 1.8A X-ray structure of C95M/C1095F double mutant of tethered HIV-1 protease dimer complexed with acetyl pepstatin.
    Prashar V; Hosur MV
    Biochem Biophys Res Commun; 2004 Oct; 323(4):1229-35. PubMed ID: 15451428
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biochemical and biophysical characterization of inhibitor binding to caspase-3 reveals induced asymmetry.
    Aulabaugh A; Kapoor B; Huang X; Dollings P; Hum WT; Banker A; Wood A; Ellestad G
    Biochemistry; 2007 Aug; 46(33):9462-71. PubMed ID: 17649976
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Solvent-exposed residues located in the beta-sheet modulate the stability of the tetramerization domain of p53--a structural and combinatorial approach.
    Mora P; Carbajo RJ; Pineda-Lucena A; Sánchez del Pino MM; Pérez-Payá E
    Proteins; 2008 Jun; 71(4):1670-85. PubMed ID: 18076077
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interaction of Alzheimer's A beta peptide with an engineered binding protein--thermodynamics and kinetics of coupled folding-binding.
    Hoyer W; Härd T
    J Mol Biol; 2008 Apr; 378(2):398-411. PubMed ID: 18358490
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Calculating proton uptake/release and binding free energy taking into account ionization and conformation changes induced by protein-inhibitor association: application to plasmepsin, cathepsin D and endothiapepsin-pepstatin complexes.
    Alexov E
    Proteins; 2004 Aug; 56(3):572-84. PubMed ID: 15229889
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure/function studies on a S-adenosyl-L-methionine-dependent uroporphyrinogen III C methyltransferase (SUMT), a key regulatory enzyme of tetrapyrrole biosynthesis.
    Vévodová J; Graham RM; Raux E; Schubert HL; Roper DI; Brindley AA; Ian Scott A; Roessner CA; Stamford NP; Elizabeth Stroupe M; Getzoff ED; Warren MJ; Wilson KS
    J Mol Biol; 2004 Nov; 344(2):419-33. PubMed ID: 15522295
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Caspase-15 is autoprocessed at two sites that contain an aspartate residue in the P1' position.
    Eckhart L; Kittel C; Ballaun C; Tschachler E
    Biochem Biophys Res Commun; 2006 Dec; 350(4):955-9. PubMed ID: 17045244
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The crystal structures of ornithine carbamoyltransferase from Mycobacterium tuberculosis and its ternary complex with carbamoyl phosphate and L-norvaline reveal the enzyme's catalytic mechanism.
    Sankaranarayanan R; Cherney MM; Cherney LT; Garen CR; Moradian F; James MN
    J Mol Biol; 2008 Jan; 375(4):1052-63. PubMed ID: 18062991
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.