These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 12873389)

  • 21. Development of rodent whisking: trigeminal input and central pattern generation.
    Landers M; Philip Zeigler H
    Somatosens Mot Res; 2006; 23(1-2):1-10. PubMed ID: 16846954
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Vibrissa motor cortex activity suppresses contralateral whisking behavior.
    Ebbesen CL; Doron G; Lenschow C; Brecht M
    Nat Neurosci; 2017 Jan; 20(1):82-89. PubMed ID: 27798633
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Olivocerebellar modulation of motor cortex ability to generate vibrissal movements in rat.
    Lang EJ; Sugihara I; Llinás R
    J Physiol; 2006 Feb; 571(Pt 1):101-20. PubMed ID: 16357010
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of serotonin on caudal raphe neurons: activation of an inwardly rectifying potassium conductance.
    Bayliss DA; Li YW; Talley EM
    J Neurophysiol; 1997 Mar; 77(3):1349-61. PubMed ID: 9084602
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Temporal frequency of whisker movement. I. Representations in brain stem and thalamus.
    Sosnik R; Haidarliu S; Ahissar E
    J Neurophysiol; 2001 Jul; 86(1):339-53. PubMed ID: 11431515
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tactile modulation of whisking via the brainstem loop: statechart modeling and experimental validation.
    Sherman D; Oram T; Deutsch D; Gordon G; Ahissar E; Harel D
    PLoS One; 2013; 8(11):e79831. PubMed ID: 24312186
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The physiological and morphological characteristics of interneurons caudal to the trigeminal motor nucleus in rats.
    Min MY; Hsu PC; Yang HW
    Eur J Neurosci; 2003 Dec; 18(11):2981-98. PubMed ID: 14656294
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Topography of rodent whisking--I. Two-dimensional monitoring of whisker movements.
    Bermejo R; Vyas A; Zeigler HP
    Somatosens Mot Res; 2002; 19(4):341-6. PubMed ID: 12590835
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electromyographic activity of mystacial pad musculature during whisking behavior in the rat.
    Carvell GE; Simons DJ; Lichtenstein SH; Bryant P
    Somatosens Mot Res; 1991; 8(2):159-64. PubMed ID: 1887726
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identified spinal motoneurons of young rats possess nicotinic acetylcholine receptors of the heteromeric family.
    Ogier R; Liu X; Tribollet E; Bertrand D; Raggenbass M
    Eur J Neurosci; 2004 Nov; 20(10):2591-7. PubMed ID: 15548202
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Whisking as a "voluntary" response: operant control of whisking parameters and effects of whisker denervation.
    Gao P; Ploog BO; Zeigler HP
    Somatosens Mot Res; 2003; 20(3-4):179-89. PubMed ID: 14675957
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The excitability of lumbar motoneurones in the neonatal rat is increased by a hyperpolarization of their voltage threshold for activation by descending serotonergic fibres.
    Gilmore J; Fedirchuk B
    J Physiol; 2004 Jul; 558(Pt 1):213-24. PubMed ID: 15121804
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of serotonin (5-HT) on trigeminal rhythmic activities generated in in vitro brainstem block preparations.
    Mori A; Kogo M; Ishihama K; Tanaka S; Enomoto A; Koizumi H; Matsuya T
    J Dent Res; 2002 Sep; 81(9):598-602. PubMed ID: 12202639
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The development of whisker control in rats in relation to locomotion.
    Grant RA; Mitchinson B; Prescott TJ
    Dev Psychobiol; 2012 Mar; 54(2):151-68. PubMed ID: 22231841
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vibrissa movement elicited by rhythmic electrical microstimulation to motor cortex in the aroused rat mimics exploratory whisking.
    Berg RW; Kleinfeld D
    J Neurophysiol; 2003 Nov; 90(5):2950-63. PubMed ID: 12904336
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modulation of artificial whisking related signals in barrel cortex.
    Castro-Alamancos MA; Bezdudnaya T
    J Neurophysiol; 2015 Mar; 113(5):1287-301. PubMed ID: 25505118
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The mesencephalic-hypoglossal nuclei loop as a possible central pattern generator for rhythmical whisking in rats.
    Caria MA; Biagi F; Mameli O
    Exp Brain Res; 2018 Nov; 236(11):2899-2911. PubMed ID: 30073387
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Serotonin and L-norepinephrine as mediators of altered excitability in neonatal rat motoneurons studied in vitro.
    Elliott P; Wallis DI
    Neuroscience; 1992; 47(3):533-44. PubMed ID: 1584408
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Voltage-dependent calcium currents in trigeminal motoneurons of early postnatal rats: modulation by 5-HT receptors.
    Hsiao CF; Wu N; Chandler SH
    J Neurophysiol; 2005 Sep; 94(3):2063-72. PubMed ID: 15972834
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatial segregation of different modes of movement control in the whisker representation of rat primary motor cortex.
    Haiss F; Schwarz C
    J Neurosci; 2005 Feb; 25(6):1579-87. PubMed ID: 15703412
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.