These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 12873406)

  • 21. Decreasing soil water Ca2+ reduces DOC adsorption in mineral soils: implications for long-term DOC trends in an upland forested catchment in southern Ontario, Canada.
    Kerr JG; Eimers MC
    Sci Total Environ; 2012 Jun; 427-428():298-307. PubMed ID: 22554533
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Future carbon balance of China's forests under climate change and increasing CO2.
    Ju WM; Chen JM; Harvey D; Wang S
    J Environ Manage; 2007 Nov; 85(3):538-62. PubMed ID: 17187919
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Permafrost conditions in peatlands regulate magnitude, timing, and chemical composition of catchment dissolved organic carbon export.
    Olefeldt D; Roulet NT
    Glob Chang Biol; 2014 Oct; 20(10):3122-36. PubMed ID: 24753046
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels.
    Freeman C; Fenner N; Ostle NJ; Kang H; Dowrick DJ; Reynolds B; Lock MA; Sleep D; Hughes S; Hudson J
    Nature; 2004 Jul; 430(6996):195-8. PubMed ID: 15241411
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluating stream water quality through land use analysis in two grassland catchments: impact of wetlands on stream nitrogen concentration.
    Hayakawa A; Shimizu M; Woli KP; Kuramochi K; Hatano R
    J Environ Qual; 2006; 35(2):617-27. PubMed ID: 16510707
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigation of the concentration and isotopic composition of inputs and outputs of Pb in waters at an upland catchment in NE Scotland.
    Vinogradoff SI; Graham MC; Thornton GJ; Dunn SM; Bacon JR; Farmer JG
    J Environ Monit; 2005 May; 7(5):431-44. PubMed ID: 15877163
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Can climate change explain increases in DOC flux from upland peat catchments?
    Worrall F; Burt T; Adamson J
    Sci Total Environ; 2004 Jun; 326(1-3):95-112. PubMed ID: 15142769
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heat as a tracer to estimate dissolved organic carbon flux from a restored wetland.
    Burow KR; Constantz J; Fujii R
    Ground Water; 2005; 43(4):545-56. PubMed ID: 16029180
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetics of peat soil dissolved organic carbon release from bed sediment to water. Part 1. Laboratory simulation.
    Aguilar L; Thibodeaux LJ
    Chemosphere; 2005 Mar; 58(10):1309-18. PubMed ID: 15686748
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The impacts of prescribed moorland burning on water colour and dissolved organic carbon: a critical synthesis.
    Holden J; Chapman PJ; Palmer SM; Kay P; Grayson R
    J Environ Manage; 2012 Jun; 101():92-103. PubMed ID: 22406849
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting soil respiration from peatlands.
    Rowson JG; Worrall F; Evans MG; Dixon SD
    Sci Total Environ; 2013 Jan; 442():397-404. PubMed ID: 23178842
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Is in-stream processing an important control on spatial changes in carbon fluxes in headwater catchments?
    Dawson JJ; Bakewell C; Billett MF
    Sci Total Environ; 2001 Jan; 265(1-3):153-67. PubMed ID: 11227263
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carbon source/sink function of a subtropical, eutrophic lake determined from an overall mass balance and a gas exchange and carbon burial balance.
    Yang H; Xing Y; Xie P; Ni L; Rong K
    Environ Pollut; 2008 Feb; 151(3):559-68. PubMed ID: 17664033
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Upland disturbance affects headwater stream nutrients and suspended sediments during baseflow and stormflow.
    Houser JN; Mulholland PJ; Maloney KO
    J Environ Qual; 2006; 35(1):352-65. PubMed ID: 16397111
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of pH, ionic strength, dissolved organic carbon, time, and particle size on metals release from mine drainage impacted streambed sediments.
    Butler BA
    Water Res; 2009 Mar; 43(5):1392-402. PubMed ID: 19110291
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dissolved organic carbon fluxes under bare soil.
    Mertens J; Vanderborght J; Kasteel R; Pütz T; Merckx R; Feyen J; Smolders E
    J Environ Qual; 2007; 36(2):597-606. PubMed ID: 17332264
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Radiocarbon dating of fluvial organic matter reveals land-use impacts in boreal peatlands.
    Hulatt CJ; Kaartokallio H; Oinonen M; Sonninen E; Stedmon CA; Thomas DN
    Environ Sci Technol; 2014 Nov; 48(21):12543-51. PubMed ID: 25260159
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Discovering the importance of lateral CO(2) transport from a temperate spruce forest.
    Fiedler S; Höll BS; Jungkunst HF
    Sci Total Environ; 2006 Sep; 368(2-3):909-15. PubMed ID: 16678240
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stream water hydrochemistry as an indicator of carbon flow paths in Finnish peatland catchments during a spring snowmelt event.
    Dinsmore KJ; Billett MF; Dyson KE; Harvey F; Thomson AM; Piirainen S; Kortelainen P
    Sci Total Environ; 2011 Oct; 409(22):4858-67. PubMed ID: 21885090
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Size and XAD fractionations of trihalomethane precursors from soils.
    Chow AT; Guo F; Gao S; Breuer RS
    Chemosphere; 2006 Mar; 62(10):1636-46. PubMed ID: 16095666
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.