BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 12874435)

  • 1. ROS generation by nonphagocytic NADPH oxidase: potential relevance in diabetic nephropathy.
    Li JM; Shah AM
    J Am Soc Nephrol; 2003 Aug; 14(8 Suppl 3):S221-6. PubMed ID: 12874435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactive oxygen species and oxidative stress.
    Noh H; Ha H
    Contrib Nephrol; 2011; 170():102-112. PubMed ID: 21659763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative stress in diabetic nephropathy.
    Kashihara N; Haruna Y; Kondeti VK; Kanwar YS
    Curr Med Chem; 2010; 17(34):4256-69. PubMed ID: 20939814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The PKCĪ²-p66shc-NADPH oxidase pathway plays a crucial role in diabetic nephropathy.
    Cheng YS; Chao J; Chen C; Lv LL; Han YC; Liu BC
    J Pharm Pharmacol; 2019 Mar; 71(3):338-347. PubMed ID: 30417389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NADPH oxidases in the kidney.
    Gill PS; Wilcox CS
    Antioxid Redox Signal; 2006; 8(9-10):1597-607. PubMed ID: 16987014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of reactive oxygen species in the diabetic heart. Roles of mitochondria and NADPH oxidase.
    Teshima Y; Takahashi N; Nishio S; Saito S; Kondo H; Fukui A; Aoki K; Yufu K; Nakagawa M; Saikawa T
    Circ J; 2014; 78(2):300-6. PubMed ID: 24334638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein kinase C-dependent increase in reactive oxygen species (ROS) production in vascular tissues of diabetes: role of vascular NAD(P)H oxidase.
    Inoguchi T; Sonta T; Tsubouchi H; Etoh T; Kakimoto M; Sonoda N; Sato N; Sekiguchi N; Kobayashi K; Sumimoto H; Utsumi H; Nawata H
    J Am Soc Nephrol; 2003 Aug; 14(8 Suppl 3):S227-32. PubMed ID: 12874436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nox4 and diabetic nephropathy: with a friend like this, who needs enemies?
    Gorin Y; Block K
    Free Radic Biol Med; 2013 Aug; 61():130-42. PubMed ID: 23528476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of NADPH oxidases in diabetic cardiomyopathy.
    Hansen SS; Aasum E; Hafstad AD
    Biochim Biophys Acta Mol Basis Dis; 2018 May; 1864(5 Pt B):1908-1913. PubMed ID: 28754449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of endothelial NAD(P)H oxidase accelerates early glomerular injury in diabetic mice.
    Nagasu H; Satoh M; Kiyokage E; Kidokoro K; Toida K; Channon KM; Kanwar YS; Sasaki T; Kashihara N
    Lab Invest; 2016 Jan; 96(1):25-36. PubMed ID: 26552047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NADPH oxidase: A membrane-bound enzyme and its inhibitors in diabetic complications.
    Laddha AP; Kulkarni YA
    Eur J Pharmacol; 2020 Aug; 881():173206. PubMed ID: 32442539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Translocation of glomerular p47phox and p67phox by protein kinase C-beta activation is required for oxidative stress in diabetic nephropathy.
    Kitada M; Koya D; Sugimoto T; Isono M; Araki S; Kashiwagi A; Haneda M
    Diabetes; 2003 Oct; 52(10):2603-14. PubMed ID: 14514646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Podocyte-specific Nox4 deletion affords renoprotection in a mouse model of diabetic nephropathy.
    Jha JC; Thallas-Bonke V; Banal C; Gray SP; Chow BS; Ramm G; Quaggin SE; Cooper ME; Schmidt HH; Jandeleit-Dahm KA
    Diabetologia; 2016 Feb; 59(2):379-89. PubMed ID: 26508318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corosolic acid inhibits the proliferation of glomerular mesangial cells and protects against diabetic renal damage.
    Li XQ; Tian W; Liu XX; Zhang K; Huo JC; Liu WJ; Li P; Xiao X; Zhao MG; Cao W
    Sci Rep; 2016 May; 6():26854. PubMed ID: 27229751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppressing renal NADPH oxidase to treat diabetic nephropathy.
    Tojo A; Asaba K; Onozato ML
    Expert Opin Ther Targets; 2007 Aug; 11(8):1011-8. PubMed ID: 17665974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities.
    Paravicini TM; Touyz RM
    Diabetes Care; 2008 Feb; 31 Suppl 2():S170-80. PubMed ID: 18227481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myeloperoxidase amplified high glucose-induced endothelial dysfunction in vasculature: Role of NADPH oxidase and hypochlorous acid.
    Tian R; Ding Y; Peng YY; Lu N
    Biochem Biophys Res Commun; 2017 Mar; 484(3):572-578. PubMed ID: 28131839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SOCS1-targeted therapy ameliorates renal and vascular oxidative stress in diabetes via STAT1 and PI3K inhibition.
    Lopez-Sanz L; Bernal S; Recio C; Lazaro I; Oguiza A; Melgar A; Jimenez-Castilla L; Egido J; Gomez-Guerrero C
    Lab Invest; 2018 Oct; 98(10):1276-1290. PubMed ID: 29540859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upstream regulators and downstream effectors of NADPH oxidases as novel therapeutic targets for diabetic kidney disease.
    Gorin Y; Wauquier F
    Mol Cells; 2015 Apr; 38(4):285-96. PubMed ID: 25824546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mTOR promotes oxidative stress-induced apoptosis of mesangial cells in diabetic nephropathy.
    Lu Q; Zhou Y; Hao M; Li C; Wang J; Shu F; Du L; Zhu X; Zhang Q; Yin X
    Mol Cell Endocrinol; 2018 Sep; 473():31-43. PubMed ID: 29277549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.