BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 12874442)

  • 1. Role of advanced glycation end products in diabetic nephropathy.
    Forbes JM; Cooper ME; Oldfield MD; Thomas MC
    J Am Soc Nephrol; 2003 Aug; 14(8 Suppl 3):S254-8. PubMed ID: 12874442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advanced glycation end products and diabetic nephropathy.
    Thomas MC; Forbes JM; Cooper ME
    Am J Ther; 2005; 12(6):562-72. PubMed ID: 16280650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolving concepts in advanced glycation, diabetic nephropathy, and diabetic vascular disease.
    Jerums G; Panagiotopoulos S; Forbes J; Osicka T; Cooper M
    Arch Biochem Biophys; 2003 Nov; 419(1):55-62. PubMed ID: 14568009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sirt1 resists advanced glycation end products-induced expressions of fibronectin and TGF-β1 by activating the Nrf2/ARE pathway in glomerular mesangial cells.
    Huang K; Huang J; Xie X; Wang S; Chen C; Shen X; Liu P; Huang H
    Free Radic Biol Med; 2013 Dec; 65():528-540. PubMed ID: 23891678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteomeles schwerinae extracts inhibits the binding to receptors of advanced glycation end products and TGF-β1 expression in mesangial cells under diabetic conditions.
    Kim YS; Jung DH; Lee IS; Pyun BJ; Kim JS
    Phytomedicine; 2016 Apr; 23(4):388-97. PubMed ID: 27002409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Salvianolic Acid A Protects Against Diabetic Nephropathy through Ameliorating Glomerular Endothelial Dysfunction via Inhibiting AGE-RAGE Signaling.
    Hou B; Qiang G; Zhao Y; Yang X; Chen X; Yan Y; Wang X; Liu C; Zhang L; Du G
    Cell Physiol Biochem; 2017; 44(6):2378-2394. PubMed ID: 29262395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anti-hypertensive agents inhibit in vivo the formation of advanced glycation end products and improve renal damage in a type 2 diabetic nephropathy rat model.
    Nangaku M; Miyata T; Sada T; Mizuno M; Inagi R; Ueda Y; Ishikawa N; Yuzawa H; Koike H; van Ypersele de Strihou C; Kurokawa K
    J Am Soc Nephrol; 2003 May; 14(5):1212-22. PubMed ID: 12707391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the AGE crosslink breaker, alagebrium, as a renoprotective agent in diabetes.
    Coughlan MT; Forbes JM; Cooper ME
    Kidney Int Suppl; 2007 Aug; (106):S54-60. PubMed ID: 17653212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of AGEs in diabetic nephropathy.
    Fukami K; Yamagishi S; Ueda S; Okuda S
    Curr Pharm Des; 2008; 14(10):946-52. PubMed ID: 18473844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Molecular bases of diabetic nephropathy].
    Lagranha CJ; Fiorino P; Casarini DE; Schaan BD; Irigoyen MC
    Arq Bras Endocrinol Metabol; 2007 Aug; 51(6):901-12. PubMed ID: 17934656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advanced glycation end products.
    Thomas MC
    Contrib Nephrol; 2011; 170():66-74. PubMed ID: 21659759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New insights into the pathophysiology of diabetic nephropathy: from haemodynamics to molecular pathology.
    Wolf G
    Eur J Clin Invest; 2004 Dec; 34(12):785-96. PubMed ID: 15606719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AGE-RAGE axis blockade in diabetic nephropathy: Current status and future directions.
    Sanajou D; Ghorbani Haghjo A; Argani H; Aslani S
    Eur J Pharmacol; 2018 Aug; 833():158-164. PubMed ID: 29883668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of the accumulation of advanced glycation end products by ACE inhibition in experimental diabetic nephropathy.
    Forbes JM; Cooper ME; Thallas V; Burns WC; Thomas MC; Brammar GC; Lee F; Grant SL; Burrell LM; Jerums G; Osicka TM
    Diabetes; 2002 Nov; 51(11):3274-82. PubMed ID: 12401719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attenuation of extracellular matrix accumulation in diabetic nephropathy by the advanced glycation end product cross-link breaker ALT-711 via a protein kinase C-alpha-dependent pathway.
    Thallas-Bonke V; Lindschau C; Rizkalla B; Bach LA; Boner G; Meier M; Haller H; Cooper ME; Forbes JM
    Diabetes; 2004 Nov; 53(11):2921-30. PubMed ID: 15504973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of advanced glycation end-products in the progression of diabetic nephropathy.
    Makino H; Shikata K; Kushiro M; Hironaka K; Yamasaki Y; Sugimoto H; Ota Z; Araki N; Horiuchi S
    Nephrol Dial Transplant; 1996; 11 Suppl 5():76-80. PubMed ID: 9044313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advanced glycation end products and diabetic complications.
    Stitt AW; Jenkins AJ; Cooper ME
    Expert Opin Investig Drugs; 2002 Sep; 11(9):1205-23. PubMed ID: 12225243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advanced glycation: how are we progressing to combat this web of sugar anomalies in diabetic nephropathy.
    Forbes JM; Thallas-Bonke V; Cooper ME; Thomas MC
    Curr Pharm Des; 2004; 10(27):3361-72. PubMed ID: 15544521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combination therapy with the advanced glycation end product cross-link breaker, alagebrium, and angiotensin converting enzyme inhibitors in diabetes: synergy or redundancy?
    Coughlan MT; Thallas-Bonke V; Pete J; Long DM; Gasser A; Tong DC; Arnstein M; Thorpe SR; Cooper ME; Forbes JM
    Endocrinology; 2007 Feb; 148(2):886-95. PubMed ID: 17110423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advanced glycation end products mediated cellular and molecular events in the pathology of diabetic nephropathy.
    Kumar Pasupulati A; Chitra PS; Reddy GB
    Biomol Concepts; 2016 Dec; 7(5-6):293-309. PubMed ID: 27816946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.