These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 12874664)

  • 41. Artificial Neural Networks for differential diagnosis of breast lesions in MR-Mammography: a systematic approach addressing the influence of network architecture on diagnostic performance using a large clinical database.
    Dietzel M; Baltzer PA; Dietzel A; Zoubi R; Gröschel T; Burmeister HP; Bogdan M; Kaiser WA
    Eur J Radiol; 2012 Jul; 81(7):1508-13. PubMed ID: 21459533
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Improving neural networks prediction accuracy using particle swarm optimization combiner.
    Elragal HM
    Int J Neural Syst; 2009 Oct; 19(5):387-93. PubMed ID: 19885966
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Artificial neural networks applied to outcome prediction for colorectal cancer patients in separate institutions.
    Bottaci L; Drew PJ; Hartley JE; Hadfield MB; Farouk R; Lee PW; Macintyre IM; Duthie GS; Monson JR
    Lancet; 1997 Aug; 350(9076):469-72. PubMed ID: 9274582
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Use of an artificial neural network to predict head injury outcome.
    Rughani AI; Dumont TM; Lu Z; Bongard J; Horgan MA; Penar PL; Tranmer BI
    J Neurosurg; 2010 Sep; 113(3):585-90. PubMed ID: 20020844
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Improved option pricing using artificial neural networks and bootstrap methods.
    Lajbcygier PR; Connor JT
    Int J Neural Syst; 1997 Aug; 8(4):457-71. PubMed ID: 9730021
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Diagnostic and prognostic power of biomarkers to improve the management of community acquired pneumonia in the emergency department].
    Julián-Jiménez A; Timón Zapata J; Laserna Mendieta EJ; Sicilia-Bravo I; Palomo-de Los Reyes MJ; Cabezas-Martínez A; Laín-Terés N; Estebaran-Martín J; Lozano-Ancín A; Cuena-Boy R
    Enferm Infecc Microbiol Clin; 2014 Apr; 32(4):225-35. PubMed ID: 24182623
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Artificial intelligence for diagnostic purposes: principles, procedures and limitations.
    Cleophas TJ; Cleophas TF
    Clin Chem Lab Med; 2010 Feb; 48(2):159-65. PubMed ID: 20001439
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An artificial neural network for predicting the incidence of radiation pneumonitis.
    Su M; Miften M; Whiddon C; Sun X; Light K; Marks L
    Med Phys; 2005 Feb; 32(2):318-25. PubMed ID: 15789575
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A genetic algorithm to improve a neural network to predict a patient's response to warfarin.
    Narayanan MN; Lucas SB
    Methods Inf Med; 1993 Feb; 32(1):55-8. PubMed ID: 8469161
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An artificial neural network for prostate cancer staging when serum prostate specific antigen is 10 ng./ml. or less.
    Zlotta AR; Remzi M; Snow PB; Schulman CC; Marberger M; Djavan B
    J Urol; 2003 May; 169(5):1724-8. PubMed ID: 12686818
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Detection of epileptiform activities in the EEG using neural network and expert system.
    Park HS; Lee YH; Kim NG; Lee DS; Kim SI
    Stud Health Technol Inform; 1998; 52 Pt 2():1255-9. PubMed ID: 10384661
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Neural networks for visual field analysis: how do they compare with other algorithms?
    Lietman T; Eng J; Katz J; Quigley HA
    J Glaucoma; 1999 Feb; 8(1):77-80. PubMed ID: 10084278
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Prediction of lupus nephritis in patients with systemic lupus erythematosus using artificial neural networks.
    Rajimehr R; Farsiu S; Kouhsari LM; Bidari A; Lucas C; Yousefian S; Bahrami F
    Lupus; 2002; 11(8):485-92. PubMed ID: 12220102
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Retention modelling of polychlorinated biphenyls in comprehensive two-dimensional gas chromatography.
    D'Archivio AA; Incani A; Ruggieri F
    Anal Bioanal Chem; 2011 Jan; 399(2):903-13. PubMed ID: 20972553
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An improved method for estimating human circadian phase derived from multichannel ambulatory monitoring and artificial neural networks.
    Kolodyazhniy V; Späti J; Frey S; Götz T; Wirz-Justice A; Kräuchi K; Cajochen C; Wilhelm FH
    Chronobiol Int; 2012 Oct; 29(8):1078-97. PubMed ID: 22891656
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A new formulation for feedforward neural networks.
    Razavi S; Tolson BA
    IEEE Trans Neural Netw; 2011 Oct; 22(10):1588-98. PubMed ID: 21859600
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modeling drug solubility in water-cosolvent mixtures using an artificial neural network.
    Jouyban A; Majidi MR; Jalilzadeh H; Asadpour-Zeynali K
    Farmaco; 2004 Jun; 59(6):505-12. PubMed ID: 15178314
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification of spinal deformity classification with total curvature analysis and artificial neural network.
    Lin H
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):376-82. PubMed ID: 18232388
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparative analysis of logistic regression and artificial neural network for computer-aided diagnosis of breast masses.
    Song JH; Venkatesh SS; Conant EA; Arger PH; Sehgal CM
    Acad Radiol; 2005 Apr; 12(4):487-95. PubMed ID: 15831423
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Development of predictive models of laboratory animal growth using artificial neural networks.
    Yee D; Prior MG; Florence LZ
    Comput Appl Biosci; 1993 Oct; 9(5):517-22. PubMed ID: 8293323
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.