These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 12875836)

  • 1. Small structural costs for evolution from RNA to RNP-based catalysis.
    Garcia I; Weeks KM
    J Mol Biol; 2003 Aug; 331(1):57-73. PubMed ID: 12875836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient protein-facilitated splicing of the yeast mitochondrial bI5 intron.
    Weeks KM; Cech TR
    Biochemistry; 1995 Jun; 34(23):7728-38. PubMed ID: 7540041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A chemical phylogeny of group I introns based upon interference mapping of a bacterial ribozyme.
    Strauss-Soukup JK; Strobel SA
    J Mol Biol; 2000 Sep; 302(2):339-58. PubMed ID: 10970738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding of the CBP2 protein to a yeast mitochondrial group I intron requires the catalytic core of the RNA.
    Gampel A; Cech TR
    Genes Dev; 1991 Oct; 5(10):1870-80. PubMed ID: 1916266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein-dependent transition states for ribonucleoprotein assembly.
    Webb AE; Rose MA; Westhof E; Weeks KM
    J Mol Biol; 2001 Jun; 309(5):1087-100. PubMed ID: 11399081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A collapsed state functions to self-chaperone RNA folding into a native ribonucleoprotein complex.
    Webb AE; Weeks KM
    Nat Struct Biol; 2001 Feb; 8(2):135-40. PubMed ID: 11175902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct sites of phosphorothioate substitution interfere with folding and splicing of the Anabaena group I intron.
    Lupták A; Doudna JA
    Nucleic Acids Res; 2004; 32(7):2272-80. PubMed ID: 15107495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Cbp2 protein stimulates the splicing of the omega intron of yeast mitochondria.
    Shaw LC; Lewin AS
    Nucleic Acids Res; 1997 Apr; 25(8):1597-604. PubMed ID: 9092668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exon and protein positioning in a pre-catalytic group II intron RNP primed for splicing.
    Liu N; Dong X; Hu C; Zeng J; Wang J; Wang J; Wang HW; Belfort M
    Nucleic Acids Res; 2020 Nov; 48(19):11185-11198. PubMed ID: 33021674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leaving group stabilization by metal ion coordination and hydrogen bond donation is an evolutionarily conserved feature of group I introns.
    Kuo LY; Piccirilli JA
    Biochim Biophys Acta; 2001 Dec; 1522(3):158-66. PubMed ID: 11779630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA splicing: group I intron crystal structures reveal the basis of splice site selection and metal ion catalysis.
    Stahley MR; Strobel SA
    Curr Opin Struct Biol; 2006 Jun; 16(3):319-26. PubMed ID: 16697179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of A-minor tertiary interactions within a bacterial group I intron active site by 3-deazaadenosine interference mapping.
    Soukup JK; Minakawa N; Matsuda A; Strobel SA
    Biochemistry; 2002 Aug; 41(33):10426-38. PubMed ID: 12173929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of phosphate groups important to self-splicing of the Tetrahymena rRNA intron as determined by phosphorothioate substitution.
    Waring RB
    Nucleic Acids Res; 1989 Dec; 17(24):10281-93. PubMed ID: 2690016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assembly of a ribonucleoprotein catalyst by tertiary structure capture.
    Weeks KM; Cech TR
    Science; 1996 Jan; 271(5247):345-8. PubMed ID: 8553068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis for the self-chaperoning function of an RNA collapsed state.
    Garcia I; Weeks KM
    Biochemistry; 2004 Dec; 43(48):15179-86. PubMed ID: 15568809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of a tyrosyl-tRNA synthetase splicing factor bound to a group I intron RNA.
    Paukstelis PJ; Chen JH; Chase E; Lambowitz AM; Golden BL
    Nature; 2008 Jan; 451(7174):94-7. PubMed ID: 18172503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal coordination sites that contribute to structure and catalysis in the group I intron from Tetrahymena.
    Christian EL; Yarus M
    Biochemistry; 1993 May; 32(17):4475-80. PubMed ID: 7683490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein facilitation of group I intron splicing by assembly of the catalytic core and the 5' splice site domain.
    Weeks KM; Cech TR
    Cell; 1995 Jul; 82(2):221-30. PubMed ID: 7628013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A base triple in the Tetrahymena group I core affects the reaction equilibrium via a threshold effect.
    Karbstein K; Tang KH; Herschlag D
    RNA; 2004 Nov; 10(11):1730-9. PubMed ID: 15496521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutational analysis of conserved nucleotides in a self-splicing group I intron.
    Couture S; Ellington AD; Gerber AS; Cherry JM; Doudna JA; Green R; Hanna M; Pace U; Rajagopal J; Szostak JW
    J Mol Biol; 1990 Oct; 215(3):345-58. PubMed ID: 1700131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.