These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 128762)
1. Role of adrenergic mechanisms in the development of cardiac hypertrophy. Malik AB; Geha AS Proc Soc Exp Biol Med; 1975 Dec; 150(3):796-800. PubMed ID: 128762 [TBL] [Abstract][Full Text] [Related]
2. Isoproterenol-induced cardiac hypertrophy: role of circulatory versus cardiac renin-angiotensin system. Leenen FH; White R; Yuan B Am J Physiol Heart Circ Physiol; 2001 Dec; 281(6):H2410-6. PubMed ID: 11709406 [TBL] [Abstract][Full Text] [Related]
3. Altered sympathetic system and adrenoceptors during the development of cardiac hypertrophy. Ganguly PK; Lee SL; Beamish RE; Dhalla NS Am Heart J; 1989 Sep; 118(3):520-5. PubMed ID: 2476018 [TBL] [Abstract][Full Text] [Related]
4. Carbon monoxide-induced cardiac hypertrophy is not reduced by alpha- or beta-blockade in the rat. Penney DG; Formolo JM Toxicology; 1993 Jun; 80(2-3):173-87. PubMed ID: 8392228 [TBL] [Abstract][Full Text] [Related]
5. Comparison of pharmacodynamics between carvedilol and metoprolol in rats with isoproterenol-induced cardiac hypertrophy: effects of carvedilol enantiomers. Hanada K; Asari K; Saito M; Kawana J; Mita M; Ogata H Eur J Pharmacol; 2008 Jul; 589(1-3):194-200. PubMed ID: 18534575 [TBL] [Abstract][Full Text] [Related]
6. Enhanced isoproterenol-induced cardiac hypertrophy in transgenic rats with low brain angiotensinogen. Campos LA; Iliescu R; Fontes MA; Schlegel WP; Bader M; Baltatu OC Am J Physiol Heart Circ Physiol; 2006 Nov; 291(5):H2371-6. PubMed ID: 16731636 [TBL] [Abstract][Full Text] [Related]
7. Blood flow in the hypertrophied right ventricular myocardium of unanesthetized ponies. Manohar M; Bisgard GE; Bullard V; Rankin JH Am J Physiol; 1981 Jun; 240(6):H881-8. PubMed ID: 6454349 [TBL] [Abstract][Full Text] [Related]
8. Impact of cardiac hypertrophy on arterial and cardiopulmonary baroreflex control of renal sympathetic nerve activity in anaesthetized rats. Flanagan ET; Buckley MM; Aherne CM; Lainis F; Sattar M; Johns EJ Exp Physiol; 2008 Sep; 93(9):1058-64. PubMed ID: 18487313 [TBL] [Abstract][Full Text] [Related]
9. Role of alpha 1-adrenoceptor activity in progression of cardiac hypertrophy in guinea pig hearts with pressure overload. Tamai J; Hori M; Kagiya T; Iwakura K; Iwai K; Kitabatake A; Watanabe Y; Yoshida H; Inoue M; Kamada T Cardiovasc Res; 1989 Apr; 23(4):315-22. PubMed ID: 2574075 [TBL] [Abstract][Full Text] [Related]
10. Dissociation of left ventricular hypertrophy, beta-myosin heavy chain gene expression, and myosin isoform switch in rats after ascending aortic stenosis. Wiesner RJ; Ehmke H; Faulhaber J; Zak R; Rüegg JC Circulation; 1997 Mar; 95(5):1253-9. PubMed ID: 9054857 [TBL] [Abstract][Full Text] [Related]
11. The efficacy of practolol-induced beta1 adrenergic blockade in the canine heart. Hoskins EJ; Priola DV; Weiss GK Res Commun Chem Pathol Pharmacol; 1978 Jul; 21(1):165-8. PubMed ID: 684274 [TBL] [Abstract][Full Text] [Related]
12. Myocardial beta-adrenergic reactivity in pressure overload-induced cardiac hypertrophy in the rat. Communal C; Ribuot C; Durand A; Demenge P Fundam Clin Pharmacol; 1998; 12(6):590-8. PubMed ID: 9818291 [TBL] [Abstract][Full Text] [Related]
13. Correlation between haemodynamic and metabolic changes in three models of experimental cardiac hypertrophy. Zimmer HG Eur Heart J; 1984 Dec; 5 Suppl F():171-9. PubMed ID: 6099802 [TBL] [Abstract][Full Text] [Related]
14. Basal muscarinic activity does not impede beta-adrenergic activation in rabbit hearts in controls or thyroxine-induced cardiac hypertrophy. Naim KL; Rabindranauth P; Scholz PM; Tse J; Weiss HR J Cardiovasc Pharmacol; 1997 Oct; 30(4):405-11. PubMed ID: 9335397 [TBL] [Abstract][Full Text] [Related]
15. Angiotensin II in cardiac pressure-overload hypertrophy in fetal sheep. Segar JL; Dalshaug GB; Bedell KA; Smith OM; Scholz TD Am J Physiol Regul Integr Comp Physiol; 2001 Dec; 281(6):R2037-47. PubMed ID: 11705791 [TBL] [Abstract][Full Text] [Related]
16. Attenuation of beta-adrenergic cardiac responses in chronically hypoxic rats with right ventricular hypertrophy. Irmer M; Köhler G; Friedrichs H; Eschenbruch E; Döring HJ Recent Adv Stud Cardiac Struct Metab; 1975; 7():351-8. PubMed ID: 131961 [TBL] [Abstract][Full Text] [Related]
17. Effects of pressure overload, left ventricular hypertrophy on beta-adrenergic receptors, and responsiveness to catecholamines. Vatner DE; Homcy CJ; Sit SP; Manders WT; Vatner SF J Clin Invest; 1984 May; 73(5):1473-82. PubMed ID: 6325505 [TBL] [Abstract][Full Text] [Related]
18. Myocardial beta-adrenergic reactivity in volume overload-induced cardiac hypertrophy in the rat. Communal C; Ribuot C; Durand A; Demenge P Fundam Clin Pharmacol; 1998; 12(4):411-9. PubMed ID: 9711463 [TBL] [Abstract][Full Text] [Related]
19. Effects of 5-day hypoxia on cardiac adrenergic neurotransmission in rats. Mardon K; Merlet P; Syrota A; Mazière B J Appl Physiol (1985); 1998 Sep; 85(3):890-7. PubMed ID: 9729562 [TBL] [Abstract][Full Text] [Related]
20. Effects of chronic adenosine uptake blockade on adrenergic responsiveness and left ventricular chamber function in pressure overload hypertrophy in the rat. Chung ES; Perlini S; Aurigemma GP; Fenton RA; Dobson JG; Meyer TE J Hypertens; 1998 Dec; 16(12 Pt 1):1813-22. PubMed ID: 9869016 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]