BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 12876341)

  • 21. Structural delineation of histone post-translation modifications in histone-nucleosome assembly protein complex.
    Kumar A; Kashyap M; Bhavesh NS; Yogavel M; Sharma A
    J Struct Biol; 2012 Oct; 180(1):1-9. PubMed ID: 22771717
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The hydrophobicity of the H3 histone fold differs from the hydrophobicity of the other three folds.
    Silverman BD
    J Mol Evol; 2005 Mar; 60(3):354-64. PubMed ID: 15871046
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Stages of assembly and structural forms of histone oligomers-- (H2A-H2B) dimer, (H3-H4)2 tetramer and (H3-H4-H2A-H2B)2 octamer].
    Protas AF; Khrapunov SN; Berdyshev GD
    Ukr Biokhim Zh (1978); 1984; 56(6):603-8. PubMed ID: 6515728
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The nucleosomal core histone octamer at 3.1 A resolution: a tripartite protein assembly and a left-handed superhelix.
    Arents G; Burlingame RW; Wang BC; Love WE; Moudrianakis EN
    Proc Natl Acad Sci U S A; 1991 Nov; 88(22):10148-52. PubMed ID: 1946434
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Major role of the histones H3-H4 in the folding of the chromatin fiber.
    Moore SC; Ausió J
    Biochem Biophys Res Commun; 1997 Jan; 230(1):136-9. PubMed ID: 9020030
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Influence of Ionic Environment and Histone Tails on Columnar Order of Nucleosome Core Particles.
    Berezhnoy NV; Liu Y; Allahverdi A; Yang R; Su CJ; Liu CF; Korolev N; Nordenskiöld L
    Biophys J; 2016 Apr; 110(8):1720-1731. PubMed ID: 27119633
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In silico functional characterization of a double histone fold domain from the Heliothis zea virus 1.
    Greco C; Fantucci P; De Gioia L
    BMC Bioinformatics; 2005 Dec; 6 Suppl 4(Suppl 4):S15. PubMed ID: 16351741
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nucleosome positioning is determined by the (H3-H4)2 tetramer.
    Dong F; van Holde KE
    Proc Natl Acad Sci U S A; 1991 Dec; 88(23):10596-600. PubMed ID: 1961726
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Primary organization of nucleosome core particles in active and repressed nuclei].
    Bavykin SG; Usachenko SI; Shik VV; Beliavskiĭ AV; Lishanskaia IA
    Mol Biol (Mosk); 1985; 19(1):144-61. PubMed ID: 3982407
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of histone tails in the nucleosome: a computational study.
    Erler J; Zhang R; Petridis L; Cheng X; Smith JC; Langowski J
    Biophys J; 2014 Dec; 107(12):2911-2922. PubMed ID: 25517156
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comprehensive structural analysis of mutant nucleosomes containing lysine to glutamine (KQ) substitutions in the H3 and H4 histone-fold domains.
    Iwasaki W; Tachiwana H; Kawaguchi K; Shibata T; Kagawa W; Kurumizaka H
    Biochemistry; 2011 Sep; 50(36):7822-32. PubMed ID: 21812398
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [A rapid method of preparing the (H3-H4-H2A-H2b)(2) histone octamer in large quantities].
    Tiulenev VI; Konoplich LA; Krivonos AA; Khrapunov SN
    Biokhimiia; 1991 Oct; 56(10):1864-9. PubMed ID: 1777524
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Structure of chromatin. I: Levels of DNA organization in the nucleus; nucleosome and chromatin fibres].
    Santisteban MS
    Pathol Biol (Paris); 1994 Nov; 42(9):868-83. PubMed ID: 7753597
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Histone release during transcription: NAP1 forms a complex with H2A and H2B and facilitates a topologically dependent release of H3 and H4 from the nucleosome.
    Levchenko V; Jackson V
    Biochemistry; 2004 Mar; 43(9):2359-72. PubMed ID: 14992573
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Organization of the chicken histone genes in a major gene cluster and generation of an almost complete set of the core histone protein sequences.
    Takami Y; Higashio M; Fukuoka T; Takechi S; Nakayama T
    DNA Res; 1996 Apr; 3(2):95-9. PubMed ID: 8804862
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neutron and x-ray scatter studies of the histone octamer and amino and carboxyl domain trimmed octamers.
    Wood MJ; Yau P; Imai BS; Goldberg MW; Lambert SJ; Fowler AG; Baldwin JP; Godfrey JE; Moudrianakis EN; Koch MH
    J Biol Chem; 1991 Mar; 266(9):5696-702. PubMed ID: 2005107
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Amino acid substitutions in the structured domains of histones H3 and H4 partially relieve the requirement of the yeast SWI/SNF complex for transcription.
    Kruger W; Peterson CL; Sil A; Coburn C; Arents G; Moudrianakis EN; Herskowitz I
    Genes Dev; 1995 Nov; 9(22):2770-9. PubMed ID: 7590252
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The identity of conformational states of reconstituted and native histone octamers.
    Greyling HJ; Schwager S; Sewell BT; von Holt C
    Eur J Biochem; 1983 Dec; 137(1-2):221-6. PubMed ID: 6653554
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of sequence variability in nucleosome core histone folds.
    Sullivan SA; Landsman D
    Proteins; 2003 Aug; 52(3):454-65. PubMed ID: 12866056
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rearrangement of the histone H2A C-terminal domain in the nucleosome.
    Usachenko SI; Bavykin SG; Gavin IM; Bradbury EM
    Proc Natl Acad Sci U S A; 1994 Jul; 91(15):6845-9. PubMed ID: 8041707
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.