These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
322 related articles for article (PubMed ID: 12876383)
1. Characterisation of mammalian GLUT glucose transporters in a heterologous yeast expression system. Wieczorke R; Dlugai S; Krampe S; Boles E Cell Physiol Biochem; 2003; 13(3):123-34. PubMed ID: 12876383 [TBL] [Abstract][Full Text] [Related]
2. Characterization of rat Glut4 glucose transporter expressed in the yeast Saccharomyces cerevisiae: comparison with Glut1 glucose transporter. Kasahara T; Kasahara M Biochim Biophys Acta; 1997 Feb; 1324(1):111-9. PubMed ID: 9059504 [TBL] [Abstract][Full Text] [Related]
3. In vitro analysis of the glucose-transport system in GLUT4-null skeletal muscle. Ryder JW; Kawano Y; Chibalin AV; Rincón J; Tsao TS; Stenbit AE; Combatsiaris T; Yang J; Holman GD; Charron MJ; Zierath JR Biochem J; 1999 Sep; 342 ( Pt 2)(Pt 2):321-8. PubMed ID: 10455018 [TBL] [Abstract][Full Text] [Related]
4. Fructose uptake in rat adipocytes: GLUT5 expression and the effects of streptozotocin-induced diabetes. Hajduch E; Darakhshan F; Hundal HS Diabetologia; 1998 Jul; 41(7):821-8. PubMed ID: 9686924 [TBL] [Abstract][Full Text] [Related]
5. Multiple hexose transporters of Schizosaccharomyces pombe. Heiland S; Radovanovic N; Höfer M; Winderickx J; Lichtenberg H J Bacteriol; 2000 Apr; 182(8):2153-62. PubMed ID: 10735857 [TBL] [Abstract][Full Text] [Related]
6. Expression of the rat GLUT1 glucose transporter in the yeast Saccharomyces cerevisiae. Kasahara T; Kasahara M Biochem J; 1996 Apr; 315 ( Pt 1)(Pt 1):177-82. PubMed ID: 8670104 [TBL] [Abstract][Full Text] [Related]
7. The molecular genetics of hexose transport in yeasts. Boles E; Hollenberg CP FEMS Microbiol Rev; 1997 Aug; 21(1):85-111. PubMed ID: 9299703 [TBL] [Abstract][Full Text] [Related]
8. Use of hexose transport mutants to examine the expression and properties of the rat myoblast GLUT 1 transport process. Lu Z; Xia L; Mesmer OT; Lo TC Biochim Biophys Acta; 1995 Mar; 1234(2):155-65. PubMed ID: 7696290 [TBL] [Abstract][Full Text] [Related]
9. Properties of the human erythrocyte glucose transport protein are determined by cellular context. Levine KB; Robichaud TK; Hamill S; Sultzman LA; Carruthers A Biochemistry; 2005 Apr; 44(15):5606-16. PubMed ID: 15823019 [TBL] [Abstract][Full Text] [Related]
10. Characterisation of glucose transport in Saccharomyces cerevisiae with plasma membrane vesicles (countertransport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 transporters. Maier A; Völker B; Boles E; Fuhrmann GF FEMS Yeast Res; 2002 Dec; 2(4):539-50. PubMed ID: 12702270 [TBL] [Abstract][Full Text] [Related]
11. Identification of novel HXT genes in Saccharomyces cerevisiae reveals the impact of individual hexose transporters on glycolytic flux. Reifenberger E; Freidel K; Ciriacy M Mol Microbiol; 1995 Apr; 16(1):157-67. PubMed ID: 7651133 [TBL] [Abstract][Full Text] [Related]
12. Mammalian glucose permease GLUT1 facilitates transport of arsenic trioxide and methylarsonous acid. Liu Z; Sanchez MA; Jiang X; Boles E; Landfear SM; Rosen BP Biochem Biophys Res Commun; 2006 Dec; 351(2):424-30. PubMed ID: 17064664 [TBL] [Abstract][Full Text] [Related]
13. Selective inhibition by ethanol of the type 1 facilitative glucose transporter (GLUT1). Krauss SW; Diamond I; Gordon AS Mol Pharmacol; 1994 Jun; 45(6):1281-6. PubMed ID: 8022421 [TBL] [Abstract][Full Text] [Related]
14. Impairment by hexoses of the utilization of maltose by Saccharomyces cerevisiae. Heredia CF Biochim Biophys Acta; 1998 Sep; 1425(1):151-8. PubMed ID: 9813297 [TBL] [Abstract][Full Text] [Related]
15. Characterization of rat GLUT5 and functional analysis of chimeric proteins of GLUT1 glucose transporter and GLUT5 fructose transporter. Inukai K; Katagiri H; Takata K; Asano T; Anai M; Ishihara H; Nakazaki M; Kikuchi M; Yazaki Y; Oka Y Endocrinology; 1995 Nov; 136(11):4850-7. PubMed ID: 7588216 [TBL] [Abstract][Full Text] [Related]
16. Functional characterization of an insulin-responsive glucose transporter (GLUT4) from fish adipose tissue. Capilla E; Díaz M; Albalat A; Navarro I; Pessin JE; Keller K; Planas JV Am J Physiol Endocrinol Metab; 2004 Aug; 287(2):E348-57. PubMed ID: 15113704 [TBL] [Abstract][Full Text] [Related]
17. Characterization of hexose transporters in Yarrowia lipolytica reveals new groups of Sugar Porters involved in yeast growth. Lazar Z; Neuvéglise C; Rossignol T; Devillers H; Morin N; Robak M; Nicaud JM; Crutz-Le Coq AM Fungal Genet Biol; 2017 Mar; 100():1-12. PubMed ID: 28064038 [TBL] [Abstract][Full Text] [Related]
18. Reduction of glucose uptake through inhibition of hexose transporters and enhancement of their endocytosis by methylglyoxal in Saccharomyces cerevisiae. Yoshida A; Wei D; Nomura W; Izawa S; Inoue Y J Biol Chem; 2012 Jan; 287(1):701-711. PubMed ID: 22094464 [TBL] [Abstract][Full Text] [Related]
19. The osmotolerant fructophilic yeast Zygosaccharomyces rouxii employs two plasma-membrane fructose uptake systems belonging to a new family of yeast sugar transporters. Leandro MJ; Sychrová H; Prista C; Loureiro-Dias MC Microbiology (Reading); 2011 Feb; 157(Pt 2):601-608. PubMed ID: 21051487 [TBL] [Abstract][Full Text] [Related]
20. Glucose-induced cAMP signalling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase-dependent sensing process. Rolland F; De Winde JH; Lemaire K; Boles E; Thevelein JM; Winderickx J Mol Microbiol; 2000 Oct; 38(2):348-58. PubMed ID: 11069660 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]