BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 12876472)

  • 21. Structural determinants of the closed KCa3.1 channel pore in relation to channel gating: results from a substituted cysteine accessibility analysis.
    Klein H; Garneau L; Banderali U; Simoes M; Parent L; Sauvé R
    J Gen Physiol; 2007 Apr; 129(4):299-315. PubMed ID: 17353352
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sodium channel activators: model of binding inside the pore and a possible mechanism of action.
    Tikhonov DB; Zhorov BS
    FEBS Lett; 2005 Aug; 579(20):4207-12. PubMed ID: 16083886
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The binding of kappa-Conotoxin PVIIA and fast C-type inactivation of Shaker K+ channels are mutually exclusive.
    Koch ED; Olivera BM; Terlau H; Conti F
    Biophys J; 2004 Jan; 86(1 Pt 1):191-209. PubMed ID: 14695262
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of lead on voltage-gated sodium channels in rat hippocampal CA1 neurons.
    Gu Y; Wang L; Xiao C; Guo F; Ruan DY
    Neuroscience; 2005; 133(3):679-90. PubMed ID: 15896915
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcainide causes two modes of open-channel block with different voltage sensitivities in batrachotoxin-activated sodium channels.
    Zamponi GW; French RJ
    Biophys J; 1994 Sep; 67(3):1028-39. PubMed ID: 7811913
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interaction of acid-sensing ion channel (ASIC) 1 with the tarantula toxin psalmotoxin 1 is state dependent.
    Chen X; Kalbacher H; Gründer S
    J Gen Physiol; 2006 Mar; 127(3):267-76. PubMed ID: 16505147
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lidocaine: a foot in the door of the inner vestibule prevents ultra-slow inactivation of a voltage-gated sodium channel.
    Sandtner W; Szendroedi J; Zarrabi T; Zebedin E; Hilber K; Glaaser I; Fozzard HA; Dudley SC; Todt H
    Mol Pharmacol; 2004 Sep; 66(3):648-57. PubMed ID: 15322257
    [TBL] [Abstract][Full Text] [Related]  

  • 28. R-type voltage-gated Ca(2+) channel interacts with synaptic proteins and recruits synaptotagmin to the plasma membrane of Xenopus oocytes.
    Cohen R; Atlas D
    Neuroscience; 2004; 128(4):831-41. PubMed ID: 15464290
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of the Ca2+ blocking site of acid-sensing ion channel (ASIC) 1: implications for channel gating.
    Paukert M; Babini E; Pusch M; Gründer S
    J Gen Physiol; 2004 Oct; 124(4):383-94. PubMed ID: 15452199
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of batrachotoxin on the electroplax of electric eel: evidence for voltage-dependent interaction with sodium channels.
    Bartels-Bernal E; Rosenberry TL; Daly JW
    Proc Natl Acad Sci U S A; 1977 Mar; 74(3):951-5. PubMed ID: 15263
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dual actions of procainamide on batrachotoxin-activated sodium channels: open channel block and prevention of inactivation.
    Zamponi GW; Sui X; Codding PW; French RJ
    Biophys J; 1993 Dec; 65(6):2324-34. PubMed ID: 8312472
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dissecting pentobarbitone actions on single voltage-gated sodium channels.
    Duch DS; Wartenberg HC; Urban BW
    Eur J Anaesthesiol; 1995 Jan; 12(1):71-81. PubMed ID: 7705329
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Permeation of Na+ through open and Zn(2+)-occupied conductance states of cardiac sodium channels modified by batrachotoxin: exploring ion-ion interactions in a multi-ion channel.
    Schild L; Moczydlowski E
    Biophys J; 1994 Mar; 66(3 Pt 1):654-66. PubMed ID: 8011896
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Asymmetric synthesis of batrachotoxin: Enantiomeric toxins show functional divergence against NaV.
    Logan MM; Toma T; Thomas-Tran R; Du Bois J
    Science; 2016 Nov; 354(6314):865-869. PubMed ID: 27856903
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition of Sodium Ion Channel Function with Truncated Forms of Batrachotoxin.
    Toma T; Logan MM; Menard F; Devlin AS; Du Bois J
    ACS Chem Neurosci; 2016 Oct; 7(10):1463-1468. PubMed ID: 27501251
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modification of single Na+ channels by batrachotoxin.
    Quandt FN; Narahashi T
    Proc Natl Acad Sci U S A; 1982 Nov; 79(21):6732-6. PubMed ID: 6292915
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A mutation in segment IVS6 disrupts fast inactivation of sodium channels.
    McPhee JC; Ragsdale DS; Scheuer T; Catterall WA
    Proc Natl Acad Sci U S A; 1994 Dec; 91(25):12346-50. PubMed ID: 7991630
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interactions between a pore-blocking peptide and the voltage sensor of the sodium channel: an electrostatic approach to channel geometry.
    French RJ; Prusak-Sochaczewski E; Zamponi GW; Becker S; Kularatna AS; Horn R
    Neuron; 1996 Feb; 16(2):407-13. PubMed ID: 8789955
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The voltage-dependent action of pentobarbital on batrachotoxin-modified human brain sodium channels.
    Rehberg B; Duch DS; Urban BW
    Biochim Biophys Acta; 1994 Sep; 1194(2):215-22. PubMed ID: 7918535
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of gamma radiation on sodium channels in different conformations in neuroblastoma cells.
    Freschi JE; Moran A
    Biochim Biophys Acta; 1986 Jun; 858(1):31-7. PubMed ID: 2423130
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.