BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

629 related articles for article (PubMed ID: 12876559)

  • 1. Three or more routes for leukocyte migration into the central nervous system.
    Ransohoff RM; Kivisäkk P; Kidd G
    Nat Rev Immunol; 2003 Jul; 3(7):569-81. PubMed ID: 12876559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemokines, mononuclear cells and the nervous system: heaven (or hell) is in the details.
    Rebenko-Moll NM; Liu L; Cardona A; Ransohoff RM
    Curr Opin Immunol; 2006 Dec; 18(6):683-9. PubMed ID: 17010588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immune surveillance of the human central nervous system (CNS): different migration pathways of immune cells through the blood-brain barrier and blood-cerebrospinal fluid barrier in healthy persons.
    Kleine TO; Benes L
    Cytometry A; 2006 Mar; 69(3):147-51. PubMed ID: 16479603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activated leukocyte cell adhesion molecule promotes leukocyte trafficking into the central nervous system.
    Cayrol R; Wosik K; Berard JL; Dodelet-Devillers A; Ifergan I; Kebir H; Haqqani AS; Kreymborg K; Krug S; Moumdjian R; Bouthillier A; Becher B; Arbour N; David S; Stanimirovic D; Prat A
    Nat Immunol; 2008 Feb; 9(2):137-45. PubMed ID: 18157132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The blood-brain-barrier in multiple sclerosis: functional roles and therapeutic targeting.
    Correale J; Villa A
    Autoimmunity; 2007 Mar; 40(2):148-60. PubMed ID: 17453713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. T-cell trafficking competence is required for CNS invasion.
    Lees JR; Archambault AS; Russell JH
    J Neuroimmunol; 2006 Aug; 177(1-2):1-10. PubMed ID: 16822552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epicutaneous (EC) immunization with myelin basic protein (MBP) induces TCRalphabeta+ CD4+ CD8+ double positive suppressor cells that protect from experimental autoimmune encephalomyelitis (EAE).
    Tutaj M; Szczepanik M
    J Autoimmun; 2007 Jun; 28(4):208-15. PubMed ID: 17442539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of the adaptive immune response inside the central nervous system during inflammatory and autoimmune diseases.
    Pedemonte E; Mancardi G; Giunti D; Corcione A; Benvenuto F; Pistoia V; Uccelli A
    Pharmacol Ther; 2006 Sep; 111(3):555-66. PubMed ID: 16442633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leukocyte traffic in the central nervous system: the participants and their roles.
    Hickey WF
    Semin Immunol; 1999 Apr; 11(2):125-37. PubMed ID: 10329499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defining antigen-dependent stages of T cell migration from the blood to the central nervous system parenchyma.
    Archambault AS; Sim J; Gimenez MA; Russell JH
    Eur J Immunol; 2005 Apr; 35(4):1076-85. PubMed ID: 15761850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms.
    Engelhardt B; Ransohoff RM
    Trends Immunol; 2005 Sep; 26(9):485-95. PubMed ID: 16039904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Encephalitogenic lymphoblast recruitment to resting CNS microvasculature: a natural immunosurveillance mechanism?
    Alon R
    J Clin Invest; 2001 Aug; 108(4):517-9. PubMed ID: 11518723
    [No Abstract]   [Full Text] [Related]  

  • 13. Is damage in central nervous system due to inflammation?
    Chavarria A; Alcocer-Varela J
    Autoimmun Rev; 2004 Jun; 3(4):251-60. PubMed ID: 15246020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CCR6 regulates EAE pathogenesis by controlling regulatory CD4+ T-cell recruitment to target tissues.
    Villares R; Cadenas V; Lozano M; Almonacid L; Zaballos A; Martínez-A C; Varona R
    Eur J Immunol; 2009 Jun; 39(6):1671-81. PubMed ID: 19499521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TNFR1-dependent VCAM-1 expression by astrocytes exposes the CNS to destructive inflammation.
    Gimenez MA; Sim JE; Russell JH
    J Neuroimmunol; 2004 Jun; 151(1-2):116-25. PubMed ID: 15145610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular targets for disrupting leukocyte trafficking during multiple sclerosis.
    McCandless EE; Klein RS
    Expert Rev Mol Med; 2007 Jul; 9(20):1-19. PubMed ID: 17637110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of CD8 suppressors versus destructors in autoimmune central nervous system inflammation.
    Zozulya AL; Wiendl H
    Hum Immunol; 2008 Nov; 69(11):797-804. PubMed ID: 18723060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The blood-central nervous system barriers actively control immune cell entry into the central nervous system.
    Engelhardt B
    Curr Pharm Des; 2008; 14(16):1555-65. PubMed ID: 18673197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. T-cell trafficking in the central nervous system.
    Sallusto F; Impellizzieri D; Basso C; Laroni A; Uccelli A; Lanzavecchia A; Engelhardt B
    Immunol Rev; 2012 Jul; 248(1):216-27. PubMed ID: 22725964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Naive CD8 T-cells initiate spontaneous autoimmunity to a sequestered model antigen of the central nervous system.
    Na SY; Cao Y; Toben C; Nitschke L; Stadelmann C; Gold R; Schimpl A; Hünig T
    Brain; 2008 Sep; 131(Pt 9):2353-65. PubMed ID: 18669487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.