These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Biotechnological production and applications of phytases. Haefner S; Knietsch A; Scholten E; Braun J; Lohscheidt M; Zelder O Appl Microbiol Biotechnol; 2005 Sep; 68(5):588-97. PubMed ID: 16041577 [TBL] [Abstract][Full Text] [Related]
4. Low digestibility of phytate phosphorus, their impacts on the environment, and phytase opportunity in the poultry industry. Abbasi F; Fakhur-Un-Nisa T; Liu J; Luo X; Abbasi IHR Environ Sci Pollut Res Int; 2019 Apr; 26(10):9469-9479. PubMed ID: 30788700 [TBL] [Abstract][Full Text] [Related]
5. Biophysical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): molecular size, glycosylation pattern, and engineering of proteolytic resistance. Wyss M; Pasamontes L; Friedlein A; Rémy R; Tessier M; Kronenberger A; Middendorf A; Lehmann M; Schnoebelen L; Röthlisberger U; Kusznir E; Wahl G; Müller F; Lahm HW; Vogel K; van Loon AP Appl Environ Microbiol; 1999 Feb; 65(2):359-66. PubMed ID: 9925554 [TBL] [Abstract][Full Text] [Related]
6. Shifting the pH profile of Aspergillus niger PhyA phytase to match the stomach pH enhances its effectiveness as an animal feed additive. Kim T; Mullaney EJ; Porres JM; Roneker KR; Crowe S; Rice S; Ko T; Ullah AH; Daly CB; Welch R; Lei XG Appl Environ Microbiol; 2006 Jun; 72(6):4397-403. PubMed ID: 16751556 [TBL] [Abstract][Full Text] [Related]
7. Effect of phytase from Aspergillus niger on plant growth and mineral assimilation in wheat (Triticum aestivum Linn.) and its potential for use as a soil amendment. Gujar PD; Bhavsar KP; Khire JM J Sci Food Agric; 2013 Jul; 93(9):2242-7. PubMed ID: 23355258 [TBL] [Abstract][Full Text] [Related]
8. Development of phytase-expressing chlamydomonas reinhardtii for monogastric animal nutrition. Erpel F; Restovic F; Arce-Johnson P BMC Biotechnol; 2016 Mar; 16():29. PubMed ID: 26969115 [TBL] [Abstract][Full Text] [Related]
9. Molecular characterization, physicochemical properties, known and potential applications of phytases: An overview. Rao DE; Rao KV; Reddy TP; Reddy VD Crit Rev Biotechnol; 2009; 29(2):182-98. PubMed ID: 19514894 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of nutrient equivalency of microbial phytase in hens in late lay given maize-soybean or distiller's dried grains with solubles (DDGS) diets. Deniz G; Gezen SS; Kara C; Gencoglu H; Meral Y; Baser E Br Poult Sci; 2013; 54(4):494-502. PubMed ID: 23826927 [TBL] [Abstract][Full Text] [Related]
11. Transgenic maize plants expressing a fungal phytase gene. Chen R; Xue G; Chen P; Yao B; Yang W; Ma Q; Fan Y; Zhao Z; Tarczynski MC; Shi J Transgenic Res; 2008 Aug; 17(4):633-43. PubMed ID: 17932782 [TBL] [Abstract][Full Text] [Related]
12. Biochemical Characterization of a Psychrophilic Phytase from an Artificially Cultivable Morel Morchella importuna. Tan H; Tang J; Li X; Liu T; Miao R; Huang Z; Wang Y; Gan B; Peng W J Microbiol Biotechnol; 2017 Dec; 27(12):2180-2189. PubMed ID: 29017237 [TBL] [Abstract][Full Text] [Related]
13. The degradation of phytate by microbial and wheat phytases is dependent on the phytate matrix and the phytase origin. Brejnholt SM; Dionisio G; Glitsoe V; Skov LK; Brinch-Pedersen H J Sci Food Agric; 2011 Jun; 91(8):1398-405. PubMed ID: 21387323 [TBL] [Abstract][Full Text] [Related]
14. Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): catalytic properties. Wyss M; Brugger R; Kronenberger A; Rémy R; Fimbel R; Oesterhelt G; Lehmann M; van Loon AP Appl Environ Microbiol; 1999 Feb; 65(2):367-73. PubMed ID: 9925555 [TBL] [Abstract][Full Text] [Related]
15. P and Ca digestibility is increased in broiler diets supplemented with the high-phytase HIGHPHY wheat. Scholey D; Burton E; Morgan N; Sanni C; Madsen CK; Dionisio G; Brinch-Pedersen H Animal; 2017 Sep; 11(9):1457-1463. PubMed ID: 28318476 [TBL] [Abstract][Full Text] [Related]
16. Molecular and biochemical characteristics of β-propeller phytase from marine Pseudomonas sp. BS10-3 and its potential application for animal feed additives. Nam SJ; Kim YO; Ko TK; Kang JK; Chun KH; Auh JH; Lee CS; Lee IK; Park S; Oh BC J Microbiol Biotechnol; 2014 Oct; 24(10):1413-20. PubMed ID: 25112322 [TBL] [Abstract][Full Text] [Related]
17. Microbial phytase addition resulted in a greater increase in phosphorus digestibility in dry-fed compared with liquid-fed non-heat-treated wheat-barley-maize diets for pigs. Blaabjerg K; Thomassen AM; Poulsen HD Animal; 2015 Feb; 9(2):243-8. PubMed ID: 25245085 [TBL] [Abstract][Full Text] [Related]
18. Phytate and phytase in fish nutrition. Kumar V; Sinha AK; Makkar HP; De Boeck G; Becker K J Anim Physiol Anim Nutr (Berl); 2012 Jun; 96(3):335-64. PubMed ID: 21692871 [TBL] [Abstract][Full Text] [Related]
19. Phytase supplementation and reduced-phosphorus turkey diets reduce phosphorus loss in runoff following litter application. Maguire RO; Sims JT; Applegate TJ J Environ Qual; 2005; 34(1):359-69. PubMed ID: 15647566 [TBL] [Abstract][Full Text] [Related]
20. Corn seeds as bioreactors for the production of phytase in the feed industry. Chen R; Zhang C; Yao B; Xue G; Yang W; Zhou X; Zhang J; Sun C; Chen P; Fan Y J Biotechnol; 2013 May; 165(2):120-6. PubMed ID: 23473991 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]