These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 12876799)
1. Ethanol and thermotolerance in the bioconversion of xylose by yeasts. Jeffries TW; Jin YS Adv Appl Microbiol; 2000; 47():221-68. PubMed ID: 12876799 [TBL] [Abstract][Full Text] [Related]
2. Stress tolerance in a yeast lipid mutant: membrane lipids influence tolerance to heat and ethanol independently of heat shock proteins and trehalose. Swan TM; Watson K Can J Microbiol; 1999 Jun; 45(6):472-9. PubMed ID: 10453475 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous bioconversion of cellulose and hemicellulose to ethanol. Chandrakant P; Bisaria VS Crit Rev Biotechnol; 1998; 18(4):295-331. PubMed ID: 9887507 [TBL] [Abstract][Full Text] [Related]
4. Genetic improvement of native xylose-fermenting yeasts for ethanol production. Harner NK; Wen X; Bajwa PK; Austin GD; Ho CY; Habash MB; Trevors JT; Lee H J Ind Microbiol Biotechnol; 2015 Jan; 42(1):1-20. PubMed ID: 25404205 [TBL] [Abstract][Full Text] [Related]
5. The heat shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap. Piper PW FEMS Microbiol Lett; 1995 Dec; 134(2-3):121-7. PubMed ID: 8586257 [TBL] [Abstract][Full Text] [Related]
6. Hsp30, the integral plasma membrane heat shock protein of Saccharomyces cerevisiae, is a stress-inducible regulator of plasma membrane H(+)-ATPase. Piper PW; Ortiz-Calderon C; Holyoak C; Coote P; Cole M Cell Stress Chaperones; 1997 Mar; 2(1):12-24. PubMed ID: 9250391 [TBL] [Abstract][Full Text] [Related]
7. Ethanolic fermentation of pentoses in lignocellulose hydrolysates. Hahn-Hägerdal B; Lindén T; Senac T; Skoog K Appl Biochem Biotechnol; 1991; 28-29():131-44. PubMed ID: 1929360 [TBL] [Abstract][Full Text] [Related]
8. [Physiological and metabolic characteristics of five xylose utilizing yeasts]. Fan H; Zhang L; Li Y; Li Y; Gu Z; Ding Z; Shi G Wei Sheng Wu Xue Bao; 2015 Aug; 55(8):1026-35. PubMed ID: 26665600 [TBL] [Abstract][Full Text] [Related]
9. The Heat Shock Transcription Factor HsfA Plays a Role in Membrane Lipids Biosynthesis Connecting Thermotolerance and Unsaturated Fatty Acid Metabolism in Aspergillus fumigatus. Fabri JHTM; Rocha MC; Fernandes CM; Campanella JEM; Cunha AFD; Del Poeta M; Malavazi I Microbiol Spectr; 2023 Jun; 11(3):e0162723. PubMed ID: 37195179 [TBL] [Abstract][Full Text] [Related]
10. Conversion of pentoses to ethanol by yeasts and fungi. Schneider H Crit Rev Biotechnol; 1989; 9(1):1-40. PubMed ID: 2670247 [TBL] [Abstract][Full Text] [Related]
11. Activity of the plasma membrane H(+)-ATPase is a key physiological determinant of thermotolerance in Saccharomyces cerevisiae. Coote PJ; Jones MV; Seymour IJ; Rowe DL; Ferdinando DP; McArthur AJ; Cole MB Microbiology (Reading); 1994 Aug; 140 ( Pt 8)():1881-90. PubMed ID: 7921241 [TBL] [Abstract][Full Text] [Related]
12. The isolation of pentose-assimilating yeasts and their xylose fermentation potential. Martins GM; Bocchini-Martins DA; Bezzerra-Bussoli C; Pagnocca FC; Boscolo M; Monteiro DA; Silva RD; Gomes E Braz J Microbiol; 2018; 49(1):162-168. PubMed ID: 28888830 [TBL] [Abstract][Full Text] [Related]
13. Successful design and development of genetically engineered Saccharomyces yeasts for effective cofermentation of glucose and xylose from cellulosic biomass to fuel ethanol. Ho NW; Chen Z; Brainard AP; Sedlak M Adv Biochem Eng Biotechnol; 1999; 65():163-92. PubMed ID: 10533435 [TBL] [Abstract][Full Text] [Related]
14. A wild and tolerant yeast suitable for ethanol fermentation from lignocellulose. Kodama S; Nakanishi H; Thalagala TA; Isono N; Hisamatsu M J Biosci Bioeng; 2013 May; 115(5):557-61. PubMed ID: 23273910 [TBL] [Abstract][Full Text] [Related]
15. Genetic engineering for improved xylose fermentation by yeasts. Jeffries TW; Shi NQ Adv Biochem Eng Biotechnol; 1999; 65():117-61. PubMed ID: 10533434 [TBL] [Abstract][Full Text] [Related]
16. Construction of Hansenula polymorpha strains with improved thermotolerance. Ishchuk OP; Voronovsky AY; Abbas CA; Sibirny AA Biotechnol Bioeng; 2009 Dec; 104(5):911-9. PubMed ID: 19575437 [TBL] [Abstract][Full Text] [Related]
17. Fermentation performance of engineered and evolved xylose-fermenting Saccharomyces cerevisiae strains. Sonderegger M; Jeppsson M; Larsson C; Gorwa-Grauslund MF; Boles E; Olsson L; Spencer-Martins I; Hahn-Hägerdal B; Sauer U Biotechnol Bioeng; 2004 Jul; 87(1):90-8. PubMed ID: 15211492 [TBL] [Abstract][Full Text] [Related]
18. Transcriptional activator Cat8 is involved in regulation of xylose alcoholic fermentation in the thermotolerant yeast Ogataea (Hansenula) polymorpha. Ruchala J; Kurylenko OO; Soontorngun N; Dmytruk KV; Sibirny AA Microb Cell Fact; 2017 Feb; 16(1):36. PubMed ID: 28245828 [TBL] [Abstract][Full Text] [Related]
19. The plasma membrane of yeast acquires a novel heat-shock protein (hsp30) and displays a decline in proton-pumping ATPase levels in response to both heat shock and the entry to stationary phase. Panaretou B; Piper PW Eur J Biochem; 1992 Jun; 206(3):635-40. PubMed ID: 1535043 [TBL] [Abstract][Full Text] [Related]
20. Bioprospecting thermotolerant ethanologenic yeasts for simultaneous saccharification and fermentation from diverse environments. Choudhary J; Singh S; Nain L J Biosci Bioeng; 2017 Mar; 123(3):342-346. PubMed ID: 27856231 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]