These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 12877465)
21. Stable iron isotope fractionation between aqueous Fe(II) and hydrous ferric oxide. Wu L; Beard BL; Roden EE; Johnson CM Environ Sci Technol; 2011 Mar; 45(5):1847-52. PubMed ID: 21294566 [TBL] [Abstract][Full Text] [Related]
22. Biological redox cycling of iron in nontronite and its potential application in nitrate removal. Zhao L; Dong H; Kukkadapu RK; Zeng Q; Edelmann RE; PentrĂ¡k M; Agrawal A Environ Sci Technol; 2015 May; 49(9):5493-501. PubMed ID: 25873540 [TBL] [Abstract][Full Text] [Related]
23. Bacterial reduction of copper-contaminated ferric oxide: copper toxicity and the interaction between fermentative and iron-reducing bacteria. Markwiese JT; Colberg PJ Arch Environ Contam Toxicol; 2000 Feb; 38(2):139-46. PubMed ID: 10629273 [TBL] [Abstract][Full Text] [Related]
24. Biogenic FeS accelerates reductive dechlorination of carbon tetrachloride by Shewanella putrefaciens CN32. Huo YC; Li WW; Chen CB; Li CX; Zeng R; Lau TC; Huang TY Enzyme Microb Technol; 2016 Dec; 95():236-241. PubMed ID: 27866621 [TBL] [Abstract][Full Text] [Related]
25. Effect of Shewanella oneidensis on the Kinetics of Fe(II)-Catalyzed Transformation of Ferrihydrite to Crystalline Iron Oxides. Xiao W; Jones AM; Li X; Collins RN; Waite TD Environ Sci Technol; 2018 Jan; 52(1):114-123. PubMed ID: 29205031 [TBL] [Abstract][Full Text] [Related]
26. Spectroscopic evidence for Fe(II)-Fe(III) electron transfer at the iron oxide-water interface. Williams AG; Scherer MM Environ Sci Technol; 2004 Sep; 38(18):4782-90. PubMed ID: 15487788 [TBL] [Abstract][Full Text] [Related]
27. Reductive dechlorination of carbon tetrachloride by bioreduction of nontronite. Bae S; Joo JB; Lee W J Hazard Mater; 2017 Jul; 334():104-111. PubMed ID: 28402894 [TBL] [Abstract][Full Text] [Related]
28. Impact of Bioreduction on Remobilization of Adsorbed Cadmium on Iron Minerals in Anoxic Condition. Ghorbanzadeh N; Lakzian A; Halajnia A; Choi UK; Kim KH; Kim JO; Kurade M; Jeon BH Water Environ Res; 2017 Jun; 89(6):519-526. PubMed ID: 28545603 [TBL] [Abstract][Full Text] [Related]
29. Abiotic reductive immobilization of U(VI) by biogenic mackinawite. Veeramani H; Scheinost AC; Monsegue N; Qafoku NP; Kukkadapu R; Newville M; Lanzirotti A; Pruden A; Murayama M; Hochella MF Environ Sci Technol; 2013 Mar; 47(5):2361-9. PubMed ID: 23373896 [TBL] [Abstract][Full Text] [Related]
30. Specific surface chemical interactions between hydrous ferric oxide and iron-reducing bacteria determined using pK(a) spectra. Smith DS; Ferris FG J Colloid Interface Sci; 2003 Oct; 266(1):60-7. PubMed ID: 12957582 [TBL] [Abstract][Full Text] [Related]
31. Dissimilatory Fe(III) oxide reduction by Shewanella alga BrY requires adhesion. Das A; Caccavo F Curr Microbiol; 2000 May; 40(5):344-7. PubMed ID: 10706667 [TBL] [Abstract][Full Text] [Related]
32. Nitrite reduction with hydrous ferric oxide and Fe(II): stoichiometry, rate, and mechanism. Tai YL; Dempsey BA Water Res; 2009 Feb; 43(2):546-52. PubMed ID: 19081595 [TBL] [Abstract][Full Text] [Related]
33. Influence of clay minerals on sorption and bioreduction of arsenic under anoxic conditions. Ghorbanzadeh N; Lakzian A; Halajnia A; Kabra AN; Kurade MB; Lee DS; Jeon BH Environ Geochem Health; 2015 Dec; 37(6):997-1005. PubMed ID: 25971375 [TBL] [Abstract][Full Text] [Related]
34. Simultaneous microbial reduction of iron(III) and arsenic(V) in suspensions of hydrous ferric oxide. Campbell KM; Malasarn D; Saltikov CW; Newman DK; Hering JG Environ Sci Technol; 2006 Oct; 40(19):5950-5. PubMed ID: 17051784 [TBL] [Abstract][Full Text] [Related]
35. Anoxic and Oxic Oxidation of Rocks Containing Fe(II)Mg-Silicates and Fe(II)-Monosulfides as Source of Fe(III)-Minerals and Hydrogen. Geobiotropy. Bassez MP Orig Life Evol Biosph; 2017 Dec; 47(4):453-480. PubMed ID: 28361301 [TBL] [Abstract][Full Text] [Related]
37. Enhancement of biological reduction of hematite by electron shuttling and Fe(II) complexation. Royer RA; Burgos WD; Fisher AS; Unz RF; Dempsey BA Environ Sci Technol; 2002 May; 36(9):1939-46. PubMed ID: 12026974 [TBL] [Abstract][Full Text] [Related]
38. [Anaerobic reduction of humus/Fe (III) and electron transport mechanism of Fontibacter sp. SgZ-2]. Ma C; Yang GQ; Lu Q; Zhou SG Huan Jing Ke Xue; 2014 Sep; 35(9):3522-9. PubMed ID: 25518675 [TBL] [Abstract][Full Text] [Related]
39. Intracellular iron minerals in a dissimilatory iron-reducing bacterium. Glasauer S; Langley S; Beveridge TJ Science; 2002 Jan; 295(5552):117-9. PubMed ID: 11778045 [TBL] [Abstract][Full Text] [Related]
40. Reduction of ferric green rust by Shewanella putrefaciens. Jorand F; Zegeye A; Landry F; Ruby C Lett Appl Microbiol; 2007 Nov; 45(5):515-21. PubMed ID: 17868312 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]