BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 12878210)

  • 1. Activation mechanism of HSP16.5 from Methanococcus jannaschii.
    Kim DR; Lee I; Ha SC; Kim KK
    Biochem Biophys Res Commun; 2003 Aug; 307(4):991-8. PubMed ID: 12878210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subunit exchange, conformational stability, and chaperone-like function of the small heat shock protein 16.5 from Methanococcus jannaschii.
    Bova MP; Huang Q; Ding L; Horwitz J
    J Biol Chem; 2002 Oct; 277(41):38468-75. PubMed ID: 12176992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preheating induced homogeneity of the small heat shock protein from Methanococcus jannaschii.
    Cao A; Wang Z; Wei P; Xu F; Cao J; Lai L
    Biochim Biophys Acta; 2008 Mar; 1784(3):489-95. PubMed ID: 18211832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the mechanism of chaperone activity of the small heat-shock protein of Methanococcus jannaschii.
    Kim R; Lai L; Lee HH; Cheong GW; Kim KK; Wu Z; Yokota H; Marqusee S; Kim SH
    Proc Natl Acad Sci U S A; 2003 Jul; 100(14):8151-5. PubMed ID: 12817080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The minimal α-crystallin domain of Mj Hsp16.5 is functional at non-heat-shock conditions.
    Xi D; Wei P; Zhang C; Lai L
    Proteins; 2014 Jul; 82(7):1156-67. PubMed ID: 24243469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Mycobacterium tuberculosis small heat shock protein Hsp16.3 exposes hydrophobic surfaces at mild conditions: conformational flexibility and molecular chaperone activity.
    Yang H; Huang S; Dai H; Gong Y; Zheng C; Chang Z
    Protein Sci; 1999 Jan; 8(1):174-9. PubMed ID: 10210195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryoelectron microscopy and EPR analysis of engineered symmetric and polydisperse Hsp16.5 assemblies reveals determinants of polydispersity and substrate binding.
    Shi J; Koteiche HA; McHaourab HS; Stewart PL
    J Biol Chem; 2006 Dec; 281(52):40420-8. PubMed ID: 17079234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small heat-shock protein structures reveal a continuum from symmetric to variable assemblies.
    Haley DA; Bova MP; Huang QL; Mchaourab HS; Stewart PL
    J Mol Biol; 2000 Apr; 298(2):261-72. PubMed ID: 10764595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional profiling of the hyperthermophilic methanarchaeon Methanococcus jannaschii in response to lethal heat and non-lethal cold shock.
    Boonyaratanakornkit BB; Simpson AJ; Whitehead TA; Fraser CM; El-Sayed NM; Clark DS
    Environ Microbiol; 2005 Jun; 7(6):789-97. PubMed ID: 15892698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of a small heat-shock protein.
    Kim KK; Kim R; Kim SH
    Nature; 1998 Aug; 394(6693):595-9. PubMed ID: 9707123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pressure activation of the chaperone function of small heat shock proteins.
    Tölgyesi E; Böde CS; Smelleri L; Kim DR; Kim KK; Heremans K; Fidy J
    Cell Mol Biol (Noisy-le-grand); 2004 Jun; 50(4):361-9. PubMed ID: 15529746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural dynamics of archaeal small heat shock proteins.
    Haslbeck M; Kastenmüller A; Buchner J; Weinkauf S; Braun N
    J Mol Biol; 2008 Apr; 378(2):362-74. PubMed ID: 18353362
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and mechanical hierarchies in the alpha-crystallin domain dimer of the hyperthermophilic small heat shock protein Hsp16.5.
    Bertz M; Chen J; Feige MJ; Franzmann TM; Buchner J; Rief M
    J Mol Biol; 2010 Jul; 400(5):1046-56. PubMed ID: 20595041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cryoelectron microscopy analysis of small heat shock protein 16.5 (Hsp16.5) complexes with T4 lysozyme reveals the structural basis of multimode binding.
    Shi J; Koteiche HA; McDonald ET; Fox TL; Stewart PL; McHaourab HS
    J Biol Chem; 2013 Feb; 288(7):4819-30. PubMed ID: 23277356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The determinants of the oligomeric structure in Hsp16.5 are encoded in the alpha-crystallin domain.
    Koteiche HA; Mchaourab HS
    FEBS Lett; 2002 May; 519(1-3):16-22. PubMed ID: 12023011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and characterization of the chaperone-like Hsp26 from Saccharomyces cerevisiae.
    Ferreira RM; de Andrade LR; Dutra MB; de Souza MF; Flosi Paschoalin VM; Silva JT
    Protein Expr Purif; 2006 Jun; 47(2):384-92. PubMed ID: 16603379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of bis-ANS binding sites in Mycobacterium tuberculosis small heat shock protein Hsp16.3: evidences for a two-step substrate-binding mechanism.
    Fu X; Chang Z
    Biochem Biophys Res Commun; 2006 Oct; 349(1):167-71. PubMed ID: 16930542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small heat shock protein Hsp16.3 modulates its chaperone activity by adjusting the rate of oligomeric dissociation.
    Fu X; Liu C; Liu Y; Feng X; Gu L; Chen X; Chang Z
    Biochem Biophys Res Commun; 2003 Oct; 310(2):412-20. PubMed ID: 14521926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure and assembly of a eukaryotic small heat shock protein.
    van Montfort RL; Basha E; Friedrich KL; Slingsby C; Vierling E
    Nat Struct Biol; 2001 Dec; 8(12):1025-30. PubMed ID: 11702068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature-dependent subunit exchange and chaperone-like activities of Hsp16.3, a small heat shock protein from Mycobacterium tuberculosis.
    Fu X; Chang Z
    Biochem Biophys Res Commun; 2004 Apr; 316(2):291-9. PubMed ID: 15020216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.