These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 12878907)

  • 1. Serial intravascular ultrasonographic measurements after implantation of biodegradable polymer-coated stents in porcine coronary arteries.
    Fröhlich G; Strehblow C; Sperker W; Yahya N; Shirazi M; Hevesi A; Garamvölgyi R; Hadjiev J; Scherzer T; Glogar D; Gyöngyösi M
    Coron Artery Dis; 2003 Aug; 14(5):409-12. PubMed ID: 12878907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Usefulness of intravascular ultrasound-guided histological measurements after stenting in porcine coronary artery.
    Strehblow C; Gyöngyösi M; Sperker W; Shirazi M; Windberger U; Pugatsch T; Ben-Sasson S; Lotan C; Glogar D
    Coron Artery Dis; 2002 Aug; 13(5):291-4. PubMed ID: 12394654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vascular response to sirolimus-eluting stents delivered with a nonaggressive implantation technique: comparison of intravascular ultrasound results from the multicenter, randomized E-SIRIUS, and SIRIUS trials.
    Hoffmann R; Guagliumi G; Musumeci G; Reimers B; Petronio AS; Disco C; Amoroso G; Moses JW; Fitzgerald PJ; Schofer J; Leon MB; Breithardt G
    Catheter Cardiovasc Interv; 2005 Dec; 66(4):499-506. PubMed ID: 16273564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paradoxical effects of aurintricarboxylic acid and RG-13577: acute thrombosis and in-stent stenosis in a passive-coated stent.
    Strehblow C; Sperker W; Hevesi A; Garamvölgyi R; Petrasi Z; Shirazi M; Sylvén C; Weiss T; Lotan C; Pugatsch T; Ben-Sasson SA; Orlowski M; Glogar D; Gyöngyösi M
    J Endovasc Ther; 2006 Feb; 13(1):94-103. PubMed ID: 16445329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of interleukin-1beta convertase is associated with decrease of neointimal hyperplasia after coronary artery stenting in pigs.
    Gyöngyösi M; Sperker W; Csonka C; Bonderman D; Lang I; Strehblow C; Adlbrecht C; Shirazi M; Windberger U; Marlovits S; Gottsauner-Wolf M; Wexberg P; Kockx M; Ferdinandy P; Glogar D
    Mol Cell Biochem; 2003 Jul; 249(1-2):39-43. PubMed ID: 12956396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small stent size and intimal hyperplasia contribute to restenosis: a volumetric intravascular ultrasound analysis.
    Dussaillant GR; Mintz GS; Pichard AD; Kent KM; Satler LF; Popma JJ; Wong SC; Leon MB
    J Am Coll Cardiol; 1995 Sep; 26(3):720-4. PubMed ID: 7642865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocompatibility of tetramethylpyrazine-eluting stents in normal porcine coronary arteries.
    Ma GS; Chen LJ; Chen Z; Ding S; Shen CX; Feng Y
    Biomed Pharmacother; 2008 Feb; 62(2):125-9. PubMed ID: 17764890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel biodegradable polymer-coated, paclitaxel-eluting stent inhibits neointimal formation in porcine coronary arteries.
    Buszman P; Milewski K; Zurakowski A; Pajak J; Liszka Ł; Buszman P; Musioł E; AbuSamra M; Trznadel S; Kałuza G
    Kardiol Pol; 2010 May; 68(5):503-9. PubMed ID: 20491008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Negative vascular remodelling after implantation of bioabsorbable magnesium alloy stents in porcine coronary arteries: a randomised comparison with bare-metal and sirolimus-eluting stents.
    Maeng M; Jensen LO; Falk E; Andersen HR; Thuesen L
    Heart; 2009 Mar; 95(3):241-6. PubMed ID: 18723586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction in neointimal formation with a stent coated with multiple layers of releasable heparin in porcine coronary arteries.
    Matsumoto Y; Shimokawa H; Morishige K; Eto Y; Takeshita A
    J Cardiovasc Pharmacol; 2002 Apr; 39(4):513-22. PubMed ID: 11904525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Segmental vessel wall shear stress and neointimal formation after sirolimus-eluting stent implantation: physiological insights in a porcine coronary model.
    Carter AJ; Wei W; Gibson L; Collingwood R; Tio F; Dooley J; Kopia GA
    Cardiovasc Revasc Med; 2005; 6(2):58-64. PubMed ID: 16263360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stent design related neointimal tissue proliferation in human coronary arteries; an intravascular ultrasound study.
    Hoffmann R; Jansen C; König A; Haager PK; Kerckhoff G; vom Dahl J; Klauss V; Hanrath P; Mudra H
    Eur Heart J; 2001 Nov; 22(21):2007-14. PubMed ID: 11603908
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intravascular ultrasound assessment of neointima distribution and the length of stent that was free of intravascular ultrasound-detectable intimal hyperplasia in paclitaxel-eluting stents.
    Mintz GS; Hong MK; Raizner AE; Lee CW; Kim JJ; Escolar E; Fearnot NE; Park SW; Park SJ; Weissman NJ
    Am J Cardiol; 2005 Jan; 95(1):107-9. PubMed ID: 15619404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tyrphostin AGL-2043 eluting stent reduces neointima formation in porcine coronary arteries.
    Banai S; Gertz SD; Gavish L; Chorny M; Perez LS; Lazarovichi G; Ianculuvich M; Hoffmann M; Orlowski M; Golomb G; Levitzki A
    Cardiovasc Res; 2004 Oct; 64(1):165-71. PubMed ID: 15364624
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue proliferation within and surrounding Palmaz-Schatz stents is dependent on the aggressiveness of stent implantation technique.
    Hoffmann R; Mintz GS; Mehran R; Kent KM; Pichard AD; Satler LF; Leon MB
    Am J Cardiol; 1999 Apr; 83(8):1170-4. PubMed ID: 10215278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of high pressure vs low pressure stent implantation on intimal hyperplasia and follow-up lumen dimensions; results of a randomized trial.
    Hoffmann R; Haager P; Mintz GS; Kerckhoff G; Schwarz R; Franke A; vom Dahl J; Hanrath P
    Eur Heart J; 2001 Nov; 22(21):2015-24. PubMed ID: 11603909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intravascular ultrasonic comparative analysis of degree of intimal hyperplasia produced by four different stents in the coronary arteries.
    Hoffmann R; Radke PW; Ortlepp JR; Haager PK; Blindt R; Iofina E; Franke A; Langenberg R; Weber C; Hanrath P
    Am J Cardiol; 2004 Dec; 94(12):1548-50. PubMed ID: 15589014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stent-based delivery of antisense oligodeoxynucleotides targeted to the PDGF A-chain decreases in-stent restenosis of the coronary artery.
    Li Y; Fukuda N; Kunimoto S; Yokoyama S; Hagikura K; Kawano T; Takayama T; Honye J; Kobayashi N; Mugishima H; Saito S; Serie K
    J Cardiovasc Pharmacol; 2006 Oct; 48(4):184-90. PubMed ID: 17086098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the biocompatibility of two new diamond-like stent coatings (Dylyn) in a porcine coronary stent model.
    De Scheerder I; Szilard M; Yanming H; Ping XB; Verbeken E; Neerinck D; Demeyere E; Coppens W; Van de Werf F
    J Invasive Cardiol; 2000 Aug; 12(8):389-94. PubMed ID: 10953100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel drug-eluting stent coated with an integrin-binding cyclic Arg-Gly-Asp peptide inhibits neointimal hyperplasia by recruiting endothelial progenitor cells.
    Blindt R; Vogt F; Astafieva I; Fach C; Hristov M; Krott N; Seitz B; Kapurniotu A; Kwok C; Dewor M; Bosserhoff AK; Bernhagen J; Hanrath P; Hoffmann R; Weber C
    J Am Coll Cardiol; 2006 May; 47(9):1786-95. PubMed ID: 16682302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.