BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 12879488)

  • 1. Study of degradation pathways of Amadori compounds obtained by glycation of opioid pentapeptide and related smaller fragments: stability, reactions, and spectroscopic properties.
    Jakas A; Horvat S
    Biopolymers; 2003 Aug; 69(4):421-31. PubMed ID: 12879488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of glycation on the chemical and enzymatic stability of the endogenous opioid peptide, leucine-enkephalin, and related fragments.
    Jakas A; Horvat S
    Bioorg Chem; 2004 Dec; 32(6):516-26. PubMed ID: 15530992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transformations of bioactive peptides in the presence of sugars--characterization and stability studies of the adducts generated via the Maillard reaction.
    Roscić M; Horvat S
    Bioorg Med Chem; 2006 Jul; 14(14):4933-43. PubMed ID: 16563774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of reactive intermediates from Amadori compounds under physiological conditions.
    Zyzak DV; Richardson JM; Thorpe SR; Baynes JW
    Arch Biochem Biophys; 1995 Jan; 316(1):547-54. PubMed ID: 7840665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptide and amino acid glycation: new insights into the Maillard reaction.
    Horvat S; Jakas A
    J Pept Sci; 2004 Mar; 10(3):119-37. PubMed ID: 15113085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relative quantification of N(epsilon)-(Carboxymethyl)lysine, imidazolone A, and the Amadori product in glycated lysozyme by MALDI-TOF mass spectrometry.
    Kislinger T; Humeny A; Peich CC; Zhang X; Niwa T; Pischetsrieder M; Becker CM
    J Agric Food Chem; 2003 Jan; 51(1):51-7. PubMed ID: 12502384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Maillard reaction induced modifications of endogenous opioid peptide enkephalin.
    Jakas A
    Methods Mol Biol; 2013; 1081():137-49. PubMed ID: 24014438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fructose-induced N-terminal glycation of enkephalins and related peptides.
    Jakas A; Vinković M; Smrecki V; Sporec M; Horvat S
    J Pept Sci; 2008 Aug; 14(8):936-45. PubMed ID: 18351710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The early glycation products of the Maillard reaction: mass spectrometric characterization of novel imidazolidinones derived from an opioid pentapeptide and glucose.
    Roscić M; Versluis C; Kleinnijenhuis AJ; Horvat S; Heck AJ
    Rapid Commun Mass Spectrom; 2001; 15(12):1022-9. PubMed ID: 11400213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycosylation of lysine-containing pentapeptides by glucuronic acid: new insights into the Maillard reaction.
    Horvat S; Roscić M
    Carbohydr Res; 2010 Feb; 345(3):377-84. PubMed ID: 20034621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation pathways and opioid activity data for 3-hydroxypyridinium compounds derived from glucuronic acid and opioid peptides by Maillard processes.
    Horvat S; Roscić M; Lemieux C; Nguyen TM; Schiller PW
    Chem Biol Drug Des; 2007 Jul; 70(1):30-9. PubMed ID: 17630992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-specific synthesis of Amadori-modified peptides on solid phase.
    Frolov A; Singer D; Hoffmann R
    J Pept Sci; 2006 Jun; 12(6):389-95. PubMed ID: 16342332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N-Terminal pyrazinones: a new class of peptide-bound advanced glycation end-products.
    Krause R; Kühn J; Penndorf I; Knoll K; Henle T
    Amino Acids; 2004 Aug; 27(1):9-18. PubMed ID: 15309567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrinsic toxicity of glucose, due to non-enzymatic glycation, is controlled in-vivo by deglycation systems including: FN3K-mediated deglycation of fructosamines and transglycation of aldosamines.
    Szwergold BS
    Med Hypotheses; 2005; 65(2):337-48. PubMed ID: 15922110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acid-stable fluorescent advanced glycation end products: vesperlysines A, B, and C are formed as crosslinked products in the Maillard reaction between lysine or proteins with glucose.
    Nakamura K; Nakazawa Y; Ienaga K
    Biochem Biophys Res Commun; 1997 Mar; 232(1):227-30. PubMed ID: 9125137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycation of a lysine-containing tetrapeptide by D-glucose and D-fructose--influence of different reaction conditions on the formation of Amadori/Heyns products.
    Jakas A; Katić A; Bionda N; Horvat S
    Carbohydr Res; 2008 Sep; 343(14):2475-80. PubMed ID: 18656854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maillard reaction products in tissue proteins: new products and new perspectives.
    Thorpe SR; Baynes JW
    Amino Acids; 2003 Dec; 25(3-4):275-81. PubMed ID: 14661090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-enzymatic model glycation reactions--a comprehensive study of the reactivity of a modified arginine with aldehydic and diketonic dicarbonyl compounds by electrospray mass spectrometry.
    Saraiva MA; Borges CM; Florêncio MH
    J Mass Spectrom; 2006 Jun; 41(6):755-70. PubMed ID: 16646000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interplay between the maillard reaction and lipid peroxidation in biochemical systems.
    Hidalgo FJ; Zamora R
    Ann N Y Acad Sci; 2005 Jun; 1043():319-26. PubMed ID: 16037254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-depth mechanistic study on the formation of acrylamide and other vinylogous compounds by the maillard reaction.
    Stadler RH; Robert F; Riediker S; Varga N; Davidek T; Devaud S; Goldmann T; Hau J; Blank I
    J Agric Food Chem; 2004 Aug; 52(17):5550-8. PubMed ID: 15315399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.