BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 12879936)

  • 1. Electrically controllable microlens array fabricated by anisotropic phase separation from liquid-crystal and polymer composite materials.
    Ji HS; Kim JH; Kumar S
    Opt Lett; 2003 Jul; 28(13):1147-9. PubMed ID: 12879936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrically-Tunable Blue Phase Liquid Crystal Microlens Array Based on a Photoconductive Film.
    Huang BY; Huang SY; Chuang CH; Kuo CT
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31906448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrically tunable microlens arrays based on polarization-independent optical phase of nano liquid crystal droplets dispersed in polymer matrix.
    Yu JH; Chen HS; Chen PJ; Song KH; Noh SC; Lee JM; Ren H; Lin YH; Lee SH
    Opt Express; 2015 Jun; 23(13):17337-44. PubMed ID: 26191743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optically isotropic, electrically tunable liquid crystal droplet arrays formed by photopolymerization-induced phase separation.
    Dai H; Chen L; Zhang B; Si G; Liu YJ
    Opt Lett; 2015 Jun; 40(12):2723-6. PubMed ID: 26076246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a liquid crystal microlens array using multiwalled carbon nanotube electrodes.
    Wang X; Wilkinson TD; Mann M; Teo KB; Milne WI
    Appl Opt; 2010 Jun; 49(17):3311-5. PubMed ID: 20539349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast responsive 2D/3D switchable display using a liquid crystal microlens array.
    Tian LL; Chu F; Zhao WX; Li L; Wang QH
    Opt Lett; 2021 Dec; 46(23):5870-5873. PubMed ID: 34851911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controllable long focal length microlens based on thermal expansion.
    Hu Y; Xiong Y; Chen X; Bai H; Tian Y; Liu G
    Appl Opt; 2018 May; 57(15):4277-4282. PubMed ID: 29791406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compound liquid crystal microlens array with convergent and divergent functions.
    Kang S; Zhang X
    Appl Opt; 2016 Apr; 55(12):3333-8. PubMed ID: 27140107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optically isotropic switchable microlens arrays based on liquid crystal.
    Lee YJ; Yu CJ; Lee JH; Baek JH; Kim Y; Kim JH
    Appl Opt; 2014 Jun; 53(17):3633-6. PubMed ID: 24921125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive liquid crystal microlens array enabled by two-photon polymerization.
    He Z; Lee YH; Chanda D; Wu ST
    Opt Express; 2018 Aug; 26(16):21184-21193. PubMed ID: 30119422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast switching characteristics of a microlens array using the electroclinic effect of SmA* liquid crystals.
    Lee YM; Gwag JS; Choi Y; Lee KH; Yu CJ; Kim JH
    Appl Opt; 2009 Jul; 48(19):3737-41. PubMed ID: 19571931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polarization-independent and fast tunable microlens array based on blue phase liquid crystals.
    Lin SH; Huang LS; Lin CH; Kuo CT
    Opt Express; 2014 Jan; 22(1):925-30. PubMed ID: 24515052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polarization-insensitive tunable multifocal liquid crystal microlens array with dual lens modes.
    Antony M; Nawaz R; Wang YW; Hsu CJ; Huang CY
    Opt Express; 2023 Dec; 31(25):41117-41128. PubMed ID: 38087519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long working range light field microscope with fast scanning multifocal liquid crystal microlens array.
    Hsieh PY; Chou PY; Lin HA; Chu CY; Huang CT; Chen CH; Qin Z; Corral MM; Javidi B; Huang YP
    Opt Express; 2018 Apr; 26(8):10981-10996. PubMed ID: 29716026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of polymer microlens array with controllable focal length by modifying surface wettability.
    Xu Q; Dai B; Huang Y; Wang H; Yang Z; Wang K; Zhuang S; Zhang D
    Opt Express; 2018 Feb; 26(4):4172-4182. PubMed ID: 29475269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optically anisotropic microlens array film directly formed on a single substrate.
    Ren H; Xu S; Liu Y; Wu ST
    Opt Express; 2013 Dec; 21(24):29304-12. PubMed ID: 24514483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tunable liquid crystal microlens array using hole patterned electrode structure with ultrathin glass slab.
    Zhao X; Liu C; Zhang D; Luo Y
    Appl Opt; 2012 May; 51(15):3024-30. PubMed ID: 22614606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of performance of liquid crystal microlens with polymer surface modification.
    Hwang SJ; Liu YX; Porter GA
    Opt Express; 2014 Feb; 22(4):4620-7. PubMed ID: 24663781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liquid-crystal microlens arrays using patterned polymer networks.
    Ren H; Fan YH; Wu ST
    Opt Lett; 2004 Jul; 29(14):1608-10. PubMed ID: 15309834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrically addressed focal stack plenoptic camera based on a liquid-crystal microlens array for all-in-focus imaging.
    Chen M; Ye M; Wang Z; Hu C; Liu T; Liu K; Shi J; Zhang X
    Opt Express; 2022 Sep; 30(19):34938-34955. PubMed ID: 36242498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.