These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 12879936)

  • 21. Liquid crystal microlens with dual apertures and electrically controlling focus shift.
    Kang S; Zhang X
    Appl Opt; 2014 Jan; 53(2):244-8. PubMed ID: 24514056
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Shape-controlled, high fill-factor microlens arrays fabricated by a 3D diffuser lithography and plastic replication method.
    Chang SI; Yoon JB
    Opt Express; 2004 Dec; 12(25):6366-71. PubMed ID: 19488283
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anisotropic diffusion of light in polymer dispersed liquid crystals.
    Mertelj A; Copic M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011705. PubMed ID: 17358171
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Switchable liquid crystal lenticular microlens arrays based on photopolymerization-induced phase separation for 2D/3D autostereoscopic displays.
    Cai W; Cheng M; Kong D; Ma Z; Liu YJ
    Opt Express; 2024 Jan; 32(1):625-638. PubMed ID: 38175087
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrically Switchable, Polarization-Sensitive Encryption Based on Aluminum Nanoaperture Arrays Integrated with Polymer-Dispersed Liquid Crystals.
    Li K; Wang J; Cai W; He H; Cen M; Liu J; Luo D; Mu Q; Gérard D; Liu YJ
    Nano Lett; 2021 Sep; 21(17):7183-7190. PubMed ID: 34410715
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dual-polarized light-field imaging micro-system via a liquid-crystal microlens array for direct three-dimensional observation.
    Xin Z; Wei D; Xie X; Chen M; Zhang X; Liao J; Wang H; Xie C
    Opt Express; 2018 Feb; 26(4):4035-4049. PubMed ID: 29475259
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An electrically tunable plenoptic camera using a liquid crystal microlens array.
    Lei Y; Tong Q; Zhang X; Sang H; Ji A; Xie C
    Rev Sci Instrum; 2015 May; 86(5):053101. PubMed ID: 26026508
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Polarizer-free liquid crystal display with electrically switchable microlens array.
    Lee YJ; Baek JH; Kim Y; Heo JU; Moon YK; Gwag JS; Yu CJ; Kim JH
    Opt Express; 2013 Jan; 21(1):129-34. PubMed ID: 23388903
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication of a dual-focus artificial compound eye with improved imaging based on modified microprinting and air-assisted deformation.
    Li J; Wang W; Fu Z; Zhu R; Huang Y
    Appl Opt; 2023 Apr; 62(10):D125-D130. PubMed ID: 37132777
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new method for fabricating high density and large aperture ratio liquid microlens array.
    Ren H; Ren D; Wu ST
    Opt Express; 2009 Dec; 17(26):24183-8. PubMed ID: 20052129
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal.
    Sutherland R; Tondiglia V; Natarajan L; Chandra S; Tomlin D; Bunning T
    Opt Express; 2002 Oct; 10(20):1074-82. PubMed ID: 19451965
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vari-focal liquid microlens array using an electrically responsive fluid actuated by a ring array patterned electrode.
    Xu M; Liu Y; Li S; Li J; Zhang L; Lu H
    Appl Opt; 2022 Nov; 61(33):9781-9787. PubMed ID: 36606806
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrically Controlled Liquid Crystal Microlens Array Based on Single-Crystal Graphene Coupling Alignment for Plenoptic Imaging.
    Chen M; Shao Q; He W; Wei D; Hu C; Shi J; Liu K; Wang H; Xie C; Zhang X
    Micromachines (Basel); 2020 Nov; 11(12):. PubMed ID: 33256175
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A negative-positive tunable liquid-crystal microlens array by printing.
    Dai HT; Liu YJ; Sun XW; Luo D
    Opt Express; 2009 Mar; 17(6):4317-23. PubMed ID: 19293856
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 2D-3D switchable display based on a passive polymeric lenticular lens array and electrically suppressed ferroelectric liquid crystal.
    Shi L; Srivastava AK; Wai Tam AM; Chigrinov VG; Kwok HS
    Opt Lett; 2017 Sep; 42(17):3435-3438. PubMed ID: 28957056
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optical properties of electrically controlled arc-electrode liquid-crystal microlens array for wavefront measurement and adjustment.
    Chen M; Dai W; Shao Q; Wang H; Liu Z; Niu L; Zhang X; Wang H; Xie C
    Appl Opt; 2019 Aug; 58(24):6611-6617. PubMed ID: 31503592
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultrasmall microlens array based on vertically aligned carbon nanofibers.
    Dai Q; Rajasekharan R; Butt H; Qiu X; Amaragtunga G; Wilkinson TD
    Small; 2012 Aug; 8(16):2501-4. PubMed ID: 22696434
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Control of Femtoliter Liquid on a Microlens: A Way to Flexible Dual-Microlens Arrays.
    Bao L; Pinchasik BE; Lei L; Xu Q; Hao H; Wang X; Zhang X
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):27386-27393. PubMed ID: 31268287
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Applications of multidirectional asymmetrical microlens-array light-control films on reflective liquid-crystal displays for image quality enhancement.
    Huang YP; Shieh HP; Wu ST
    Appl Opt; 2004 Jun; 43(18):3656-63. PubMed ID: 15218605
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dual-mode photosensitive arrays based on the integration of liquid crystal microlenses and CMOS sensors for obtaining the intensity images and wavefronts of objects.
    Tong Q; Lei Y; Xin Z; Zhang X; Sang H; Xie C
    Opt Express; 2016 Feb; 24(3):1903-23. PubMed ID: 26906768
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.