BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 12880022)

  • 1. Acoustic wave propagation in double porosity media.
    Olny X; Boutin C
    J Acoust Soc Am; 2003 Jul; 114(1):73-89. PubMed ID: 12880022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macroscopic momentum and mechanical energy equations for incompressible single-phase flow in porous media.
    Paéz-García CT; Valdés-Parada FJ; Lasseux D
    Phys Rev E; 2017 Feb; 95(2-1):023101. PubMed ID: 28297957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The direct and inverse problems of an air-saturated porous cylinder submitted to acoustic radiation.
    Ogam E; Depollier C; Fellah ZE
    Rev Sci Instrum; 2010 Sep; 81(9):094902. PubMed ID: 20887001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model for wave propagation in a porous solid saturated by a three-phase fluid.
    Santos JE; Savioli GB
    J Acoust Soc Am; 2016 Feb; 139(2):693-702. PubMed ID: 26936553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Examination of Darcys law for flow in porous media with variable porosity.
    Gray WG; Miller CT
    Environ Sci Technol; 2004 Nov; 38(22):5895-901. PubMed ID: 15573587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multiscale poromicromechanical approach to wave propagation and attenuation in bone.
    Morin C; Hellmich C
    Ultrasonics; 2014 Jul; 54(5):1251-69. PubMed ID: 24457030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wave propagation through saturated porous media.
    Malinouskaya I; Mourzenko VV; Thovert JF; Adler PM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066302. PubMed ID: 18643366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new approach to model the spatiotemporal development of biofilm phase in porous media.
    Bozorg A; Sen A; Gates ID
    Environ Microbiol; 2011 Nov; 13(11):3010-23. PubMed ID: 21951321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linear dynamics of double-porosity dual-permeability materials. I. Governing equations and acoustic attenuation.
    Pride SR; Berryman JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036603. PubMed ID: 14524908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linear dynamics of double-porosity dual-permeability materials. II. Fluid transport equations.
    Pride SR; Berryman JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036604. PubMed ID: 14524909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large scale modulation of high frequency acoustic waves in periodic porous media.
    Boutin C; Rallu A; Hans S
    J Acoust Soc Am; 2012 Dec; 132(6):3622-36. PubMed ID: 23231095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CHEMO-hydrodynamic coupling between forced advection in porous media and self-sustained chemical waves.
    Atis S; Saha S; Auradou H; Martin J; Rakotomalala N; Talon L; Salin D
    Chaos; 2012 Sep; 22(3):037108. PubMed ID: 23020499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of the local resonance on the wave propagation in periodic frame structures: generalized Newtonian mechanics.
    Chesnais C; Boutin C; Hans S
    J Acoust Soc Am; 2012 Oct; 132(4):2873-86. PubMed ID: 23039554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin of the inertial deviation from Darcy's law: An investigation from a microscopic flow analysis on two-dimensional model structures.
    Agnaou M; Lasseux D; Ahmadi A
    Phys Rev E; 2017 Oct; 96(4-1):043105. PubMed ID: 29347623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Squirt flow in porous media saturated by Maxwell-type non-Newtonian fluids.
    Solazzi SG; Quintal B; Holliger K
    Phys Rev E; 2021 Feb; 103(2-1):023101. PubMed ID: 33736057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of fracture permeability on acoustic wave propagation in the porous media: A microscopic perspective.
    Wang D; Wang L; Ding P
    Ultrasonics; 2016 Aug; 70():266-74. PubMed ID: 27259119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring static viscous permeability of porous absorbing materials.
    Sadouki M; Fellah ZE; Berbiche A; Fellah M; Mitri FG; Ogam E; Depollier C
    J Acoust Soc Am; 2014 Jun; 135(6):3163-71. PubMed ID: 24907782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A homogenization method used to predict the performance of silencers containing parallel splitters.
    Nennig B; Binois R; Perrey-Debain E; Dauchez N
    J Acoust Soc Am; 2015 Jun; 137(6):3221-31. PubMed ID: 26093412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is trabecular bone permeability governed by molecular ordering-induced fluid viscosity gain? Arguments from re-evaluation of experimental data in the framework of homogenization theory.
    Abdalrahman T; Scheiner S; Hellmich C
    J Theor Biol; 2015 Jan; 365():433-44. PubMed ID: 25452137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of the pore shape on the bulk modulus and the Biot coefficient of fluid-saturated porous rocks.
    Selvadurai APS; Suvorov AP
    Sci Rep; 2020 Nov; 10(1):18959. PubMed ID: 33144624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.