These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 12880037)

  • 1. Synthetic aperture imaging using sources with finite aperture: deconvolution of the spatial impulse response.
    Lingvall F; Olofsson T; Stepinski T
    J Acoust Soc Am; 2003 Jul; 114(1):225-34. PubMed ID: 12880037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of a matched filter approach for finite aperture transducers for the synthetic aperture imaging of defects.
    Satyanarayan L; Muralidharan A; Krishnamurthy C; Balasubramaniam K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1368-82. PubMed ID: 20529712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Frequency-Domain Synthetic Aperture Focusing Techniques for Imaging With a High-Frequency Single-Element Focused Transducer.
    Shaswary E; Tavakkoli J; Kumaradas JC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Jan; 66(1):57-70. PubMed ID: 30452355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Model-based correction of diffraction effects of the virtual source element.
    Wennerström E; Stepinski T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Aug; 54(8):1614-22. PubMed ID: 17703665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model-based correction of finite aperture effect in photoacoustic tomography.
    Li ML; Tseng YC; Cheng CC
    Opt Express; 2010 Dec; 18(25):26285-92. PubMed ID: 21164977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An implementation of synthetic aperture focusing technique in frequency domain.
    Stepinski T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Jul; 54(7):1399-408. PubMed ID: 17718329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved optoacoustic microscopy through three-dimensional spatial impulse response synthetic aperture focusing technique.
    Turner J; Estrada H; Kneipp M; Razansky D
    Opt Lett; 2014 Jun; 39(12):3390-3. PubMed ID: 24978493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Fast Method to Calculate the Spatial Impulse Response for 1-D Linear Ultrasonic Phased Array Transducers.
    Zou C; Sun Z; Cai D; Muhammad S; Zhang W; Chen Q
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27834799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A method of improving overall resolution in ultrasonic array imaging using spatio-temporal deconvolution.
    Lingvall F
    Ultrasonics; 2004 Apr; 42(1-9):961-8. PubMed ID: 15047414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sparse deconvolution of B-scan images.
    Olofsson T; Wennerström E
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Aug; 54(8):1634-41. PubMed ID: 17703667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of synthetic aperture methods in ultrasound surface imaging using elementary surface types.
    Kerr W; Pierce SG; Rowe P
    Ultrasonics; 2016 Dec; 72():165-76. PubMed ID: 27552482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modified synthetic transmit aperture algorithm for ultrasound imaging.
    Tasinkevych Y; Trots I; Nowicki A; Lewin PA
    Ultrasonics; 2012 Feb; 52(2):333-42. PubMed ID: 21999938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional synthetic aperture focusing photoacoustic microscopy based on the acoustic simulation generated delay time and weighted factor.
    Peng K; Pang W; Xiao J; Wang B; Zhang X
    Appl Opt; 2020 Nov; 59(32):10082-10092. PubMed ID: 33175783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoacoustic microscopy in vivo using synthetic-aperture focusing technique combined with three-dimensional deconvolution.
    Cai D; Li Z; Li Y; Guo Z; Chen SL
    Opt Express; 2017 Jan; 25(2):1421-1434. PubMed ID: 28158024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A time-domain synthetic aperture ultrasound imaging method for material flaw quantification with validations on small-scale artificial and natural flaws.
    Guan X; He J; Rasselkorde el M
    Ultrasonics; 2015 Feb; 56():487-96. PubMed ID: 25448426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3-D ultrasonic image reconstruction in frequency domain using a virtual transducer model.
    Yu B; Jin H; Mei Y; Chen J; Wu E; Yang K
    Ultrasonics; 2022 Jan; 118():106573. PubMed ID: 34509857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A SAFT Method for the Detection of Void Defect inside a Ballastless Track Structure Using Ultrasonic Array Sensors.
    Zhu WF; Chen XJ; Li ZW; Meng XZ; Fan GP; Shao W; Zhang HY
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31661867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-mode laser-ultrasound imaging using Time-domain Synthetic Aperture Focusing Technique (T-SAFT).
    Ying KN; Ni CY; Dai LN; Yuan L; Kan WW; Shen ZH
    Photoacoustics; 2022 Sep; 27():100370. PubMed ID: 35646591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance of laser-ultrasonic F-SAFT imaging.
    Lévesque D; Blouin A; Néron C; Monchalin JP
    Ultrasonics; 2002 Dec; 40(10):1057-63. PubMed ID: 12441182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-destructive laser-ultrasonic Synthetic Aperture Focusing Technique (SAFT) for 3D visualization of defects.
    Ni CY; Chen C; Ying KN; Dai LN; Yuan L; Kan WW; Shen ZH
    Photoacoustics; 2021 Jun; 22():100248. PubMed ID: 33732616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.