These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 12880175)

  • 21. Communication from the cerebellum to the neocortex during sleep spindles.
    Xu W; De Carvalho F; Clarke AK; Jackson A
    Prog Neurobiol; 2021 Apr; 199():101940. PubMed ID: 33161064
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cognitive and motor loops of the human cerebro-cerebellar system.
    Salmi J; Pallesen KJ; Neuvonen T; Brattico E; Korvenoja A; Salonen O; Carlson S
    J Cogn Neurosci; 2010 Nov; 22(11):2663-76. PubMed ID: 19925191
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Non-invasive cerebellar stimulation--a consensus paper.
    Grimaldi G; Argyropoulos GP; Boehringer A; Celnik P; Edwards MJ; Ferrucci R; Galea JM; Groiss SJ; Hiraoka K; Kassavetis P; Lesage E; Manto M; Miall RC; Priori A; Sadnicka A; Ugawa Y; Ziemann U
    Cerebellum; 2014 Feb; 13(1):121-38. PubMed ID: 23943521
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Brain processing of stimulus deviance during slow-wave and paradoxical sleep: a study of human auditory evoked responses using the oddball paradigm.
    Bastuji H; García-Larrea L; Franc C; Mauguière F
    J Clin Neurophysiol; 1995 Mar; 12(2):155-67. PubMed ID: 7797630
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Changes in excitability of ascending and descending inputs to cerebellar climbing fibers during locomotion.
    Pardoe J; Edgley SA; Drew T; Apps R
    J Neurosci; 2004 Mar; 24(11):2656-66. PubMed ID: 15028758
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modality specificity in the cerebro-cerebellar neurocircuitry during working memory.
    Ng HB; Kao KL; Chan YC; Chew E; Chuang KH; Chen SH
    Behav Brain Res; 2016 May; 305():164-73. PubMed ID: 26930173
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional asymmetry in the cerebellum: a brief review.
    Hu D; Shen H; Zhou Z
    Cerebellum; 2008; 7(3):304-13. PubMed ID: 18418670
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Contralateral cortico-ponto-cerebellar pathways reconstruction in humans in vivo: implications for reciprocal cerebro-cerebellar structural connectivity in motor and non-motor areas.
    Palesi F; De Rinaldis A; Castellazzi G; Calamante F; Muhlert N; Chard D; Tournier JD; Magenes G; D'Angelo E; Gandini Wheeler-Kingshott CAM
    Sci Rep; 2017 Oct; 7(1):12841. PubMed ID: 28993670
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cerebro-cerebellar interactions underlying temporal information processing.
    Aso K; Hanakawa T; Aso T; Fukuyama H
    J Cogn Neurosci; 2010 Dec; 22(12):2913-25. PubMed ID: 20044898
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cortico-cerebellar coherence and causal connectivity during slow-wave activity.
    Rowland NC; Goldberg JA; Jaeger D
    Neuroscience; 2010 Mar; 166(2):698-711. PubMed ID: 20036719
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Participation of the cerebellum in the regulation of the sleep-wakefulness cycle. Results in cerebellectomized cats.
    Cunchillos JD; De Andrés I
    Electroencephalogr Clin Neurophysiol; 1982 May; 53(5):549-58. PubMed ID: 6177499
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cerebellar thalamic activity in the macaque monkey encodes the duration but not the force or velocity of wrist movement.
    Ivanusic JJ; Bourke DW; Xu ZM; Butler EG; Horne MK
    Brain Res; 2005 Apr; 1041(2):181-97. PubMed ID: 15829227
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Narcolepsy: regional cerebral blood flow during sleep and wakefulness.
    Sakai F; Meyer JS; Karacan I; Yamaguchi F; Yamamoto M
    Neurology; 1979 Jan; 29(1):61-7. PubMed ID: 218145
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Delta Oscillations Coordinate Intracerebellar and Cerebello-Hippocampal Network Dynamics during Sleep.
    Torres-Herraez A; Watson TC; Rondi-Reig L
    J Neurosci; 2022 Mar; 42(11):2268-2281. PubMed ID: 35091502
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contribution of REM sleep to Fos and FRA expression in the vestibular nuclei of rat leading to vestibular adaptation during the STS-90 Neurolab Mission.
    Pompeiano O
    Arch Ital Biol; 2007 Jan; 145(1):55-85. PubMed ID: 17274184
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effects of cerebellar stimulation on the motor cortical excitability in neurological disorders: a review.
    Iwata NK; Ugawa Y
    Cerebellum; 2005; 4(4):218-23. PubMed ID: 16321876
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Sleeping Cerebellum.
    Canto CB; Onuki Y; Bruinsma B; van der Werf YD; De Zeeuw CI
    Trends Neurosci; 2017 May; 40(5):309-323. PubMed ID: 28431742
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Long-lasting novelty-induced neuronal reverberation during slow-wave sleep in multiple forebrain areas.
    Ribeiro S; Gervasoni D; Soares ES; Zhou Y; Lin SC; Pantoja J; Lavine M; Nicolelis MA
    PLoS Biol; 2004 Jan; 2(1):E24. PubMed ID: 14737198
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Basal forebrain acetylcholine release during REM sleep is significantly greater than during waking.
    Vazquez J; Baghdoyan HA
    Am J Physiol Regul Integr Comp Physiol; 2001 Feb; 280(2):R598-601. PubMed ID: 11208592
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detection of seven sleep-waking stages in the rat.
    Gottesmann C
    Neurosci Biobehav Rev; 1992; 16(1):31-8. PubMed ID: 1553104
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.