These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 12880178)

  • 1. Axonal varicosity distributions along parallel fibers: a new angle on a cerebellar circuit.
    Shepherd GM; Raastad M
    Cerebellum; 2003; 2(2):110-3. PubMed ID: 12880178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. General and variable features of varicosity spacing along unmyelinated axons in the hippocampus and cerebellum.
    Shepherd GM; Raastad M; Andersen P
    Proc Natl Acad Sci U S A; 2002 Apr; 99(9):6340-5. PubMed ID: 11972022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphology of parallel fibres in the cerebellar cortex of the rat: an experimental light and electron microscopic study with biocytin.
    Pichitpornchai C; Rawson JA; Rees S
    J Comp Neurol; 1994 Apr; 342(2):206-20. PubMed ID: 8201032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cerebellar granule cell: ascending axon and parallel fiber.
    Huang CM; Wang L; Huang RH
    Eur J Neurosci; 2006 Apr; 23(7):1731-7. PubMed ID: 16623829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid eye movement sleep contributes to the formation of new axonal varicosities in mouse cerebellar parallel fibers after motor training.
    Chen Y; Li W
    Neurosci Lett; 2023 Jul; 810():137349. PubMed ID: 37327855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acute restraint increases varicosity density and reduces the inter-varicosity distance in NADPH diaphorase-containing neurons in the rat dorsolateral periaqueductal gray matter.
    Smalls SL; Okere CO
    Neurosci Lett; 2012 Mar; 511(1):23-7. PubMed ID: 22285727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The long-term structural plasticity of cerebellar parallel fiber axons and its modulation by motor learning.
    Carrillo J; Cheng SY; Ko KW; Jones TA; Nishiyama H
    J Neurosci; 2013 May; 33(19):8301-7. PubMed ID: 23658170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Information coding capacity of cerebellar parallel fibers.
    Huang CM; Pirtle JA; Wang YP; Huang RH
    Brain Res Bull; 2006 Jun; 70(1):49-54. PubMed ID: 16750482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Palisade pattern of mormyrid Purkinje cells: a correlated light and electron microscopic study.
    Meek J; Nieuwenhuys R
    J Comp Neurol; 1991 Apr; 306(1):156-92. PubMed ID: 2040726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A light and electron microscopic analysis of the mossy fibers of the rat dentate gyrus.
    Claiborne BJ; Amaral DG; Cowan WM
    J Comp Neurol; 1986 Apr; 246(4):435-58. PubMed ID: 3700723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mouse cerebellum from 1 to 34 months: parallel fibers.
    Huang CM; Miyamoto H; Huang RH
    Neurobiol Aging; 2006 Nov; 27(11):1715-8. PubMed ID: 16257475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Number of parallel fiber synapses on an individual Purkinje cell in the cerebellum of the rat.
    Napper RM; Harvey RJ
    J Comp Neurol; 1988 Aug; 274(2):168-77. PubMed ID: 3209740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The entire trajectory of single climbing and mossy fibers in the cerebellar nuclei and cortex.
    Shinoda Y; Sugihara I; Wu HS; Sugiuchi Y
    Prog Brain Res; 2000; 124():173-86. PubMed ID: 10943124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical studies of impulse propagation in serotonergic axons.
    Goldfinger MD; Roettger VR; Pearson JC
    Biol Cybern; 1992; 66(5):399-406. PubMed ID: 1562645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptic organization of serotonin-immunoreactive fibers in primary visual cortex of the macaque monkey.
    de Lima AD; Bloom FE; Morrison JH
    J Comp Neurol; 1988 Aug; 274(2):280-94. PubMed ID: 3209742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity-dependent axonal and synaptic plasticity in the cerebellum.
    Cesa R; Strata P
    Psychoneuroendocrinology; 2007 Aug; 32 Suppl 1():S31-5. PubMed ID: 17640822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo single branch axotomy induces GAP-43-dependent sprouting and synaptic remodeling in cerebellar cortex.
    Allegra Mascaro AL; Cesare P; Sacconi L; Grasselli G; Mandolesi G; Maco B; Knott GW; Huang L; De Paola V; Strata P; Pavone FS
    Proc Natl Acad Sci U S A; 2013 Jun; 110(26):10824-9. PubMed ID: 23754371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on unmyelinated axons and varicosities in the olfactory cortex.
    Gracey A; Scholfield CN
    Exp Brain Res; 1990; 80(2):436-40. PubMed ID: 2358055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The rat olivocerebellar system visualized in detail with anterograde PHA-L tracing technique, and sprouting of climbing fibers demonstrated after subtotal olivary lesions.
    Wiklund L; Rossi F; Strata P; van der Want JJ
    Eur J Morphol; 1990; 28(2-4):256-67. PubMed ID: 2245134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impulse entrainment: computer simulations and studies on the parallel fibers of the cerebellum.
    Kocsis JD; Cummins KL; Waxman SG; Malenka RC
    Exp Neurol; 1981 Jun; 72(3):628-37. PubMed ID: 7238712
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.