These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 12880358)

  • 1. Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media.
    Liebert A; Wabnitz H; Grosenick D; Macdonald R
    J Biomed Opt; 2003 Jul; 8(3):512-6. PubMed ID: 12880358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of fiber optic probe geometry on the applicability of inverse models of tissue reflectance spectroscopy: computational models and experimental measurements.
    Sun J; Fu K; Wang A; Lin AW; Utzinger U; Drezek R
    Appl Opt; 2006 Nov; 45(31):8152-62. PubMed ID: 17068558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffuse reflectance spectroscopy with a self-calibrating fiber optic probe.
    Yu B; Fu H; Bydlon T; Bender JE; Ramanujam N
    Opt Lett; 2008 Aug; 33(16):1783-5. PubMed ID: 18709086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative spectroscopy of superficial turbid media.
    Tseng SH; Hayakawa C; Tromberg BJ; Spanier J; Durkin AJ
    Opt Lett; 2005 Dec; 30(23):3165-7. PubMed ID: 16350274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution time-of-flight terahertz tomography using a femtosecond fiber laser.
    Takayanagi J; Jinno H; Ichino S; Suizu K; Yamashita M; Ouchi T; Kasai S; Ohtake H; Uchida H; Nishizawa N; Kawase K
    Opt Express; 2009 Apr; 17(9):7549-55. PubMed ID: 19399131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media.
    Sharma D; Agrawal A; Matchette LS; Pfefer TJ
    Biomed Eng Online; 2006 Aug; 5():49. PubMed ID: 16928274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling the optical path length in turbid media using differential path-length spectroscopy: fiber diameter dependence.
    Kaspers OP; Sterenborg HJ; Amelink A
    Appl Opt; 2008 Jan; 47(3):365-71. PubMed ID: 18204723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elimination of residual amplitude modulation in tunable diode laser wavelength modulation spectroscopy using an optical fiber delay line.
    Chakraborty AL; Ruxton K; Johnstone W; Lengden M; Duffin K
    Opt Express; 2009 Jun; 17(12):9602-7. PubMed ID: 19506608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissemination of an optical frequency comb over fiber with 3 × 10(-18) fractional accuracy.
    Marra G; Margolis HS; Richardson DJ
    Opt Express; 2012 Jan; 20(2):1775-82. PubMed ID: 22274521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fiber optic probes for biomedical optical spectroscopy.
    Utzinger U; Richards-Kortum RR
    J Biomed Opt; 2003 Jan; 8(1):121-47. PubMed ID: 12542388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Path-length-resolved measurements of multiple scattered photons in static and dynamic turbid media using phase-modulated low-coherence interferometry.
    Varghese B; Rajan V; Van Leeuwen TG; Steenbergen W
    J Biomed Opt; 2007; 12(2):024020. PubMed ID: 17477735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-scattering spectroscopy for the endoscopic analysis of particle size in superficial layers of turbid media.
    Amelink A; Bard MP; Burgers SA; Sterenborg HJ
    Appl Opt; 2003 Jul; 42(19):4095-101. PubMed ID: 12868852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth.
    Kanick SC; Robinson DJ; Sterenborg HJ; Amelink A
    Phys Med Biol; 2009 Nov; 54(22):6991-7008. PubMed ID: 19887712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Total protein measurement using a fiber-optic evanescent wave-based biosensor.
    Preejith PV; Lim CS; Kishen A; John MS; Asundi A
    Biotechnol Lett; 2003 Jan; 25(2):105-10. PubMed ID: 12882283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation.
    Zhu C; Liu Q; Ramanujam N
    J Biomed Opt; 2003 Apr; 8(2):237-47. PubMed ID: 12683849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical phantoms with adjustable subdiffusive scattering parameters.
    Krauter P; Nothelfer S; Bodenschatz N; Simon E; Stocker S; Foschum F; Kienle A
    J Biomed Opt; 2015 Oct; 20(10):105008. PubMed ID: 26473589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noise analysis of spectrometers based on speckle pattern reconstruction.
    Redding B; Popoff SM; Bromberg Y; Choma MA; Cao H
    Appl Opt; 2014 Jan; 53(3):410-7. PubMed ID: 24514126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of skew rays on the sensitivity and signal-to-noise ratio of a fiber-optic surface-plasmon-resonance sensor: a theoretical study.
    Dwivedi YS; Sharma AK; Gupta BD
    Appl Opt; 2007 Jul; 46(21):4563-9. PubMed ID: 17609701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma.
    Arifler D; Schwarz RA; Chang SK; Richards-Kortum R
    Appl Opt; 2005 Jul; 44(20):4291-305. PubMed ID: 16045217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-domain fiber laser hydrogen sensor.
    Barmenkov YO; Ortigosa-Blanch A; Diez A; Cruz JL; Andrés MV
    Opt Lett; 2004 Nov; 29(21):2461-3. PubMed ID: 15584261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.