These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 12880359)

  • 1. Spatial second-derivative image processing: an application to optical mammography to enhance the detection of breast tumors.
    Pera VE; Heffer EL; Siebold H; Schutz O; Heywang-Kobrunner S; Gotz L; Heinig A; Fantini S
    J Biomed Opt; 2003 Jul; 8(3):517-24. PubMed ID: 12880359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing breast lesions through robust multimodal data fusion using independent diffuse optical and x-ray breast imaging.
    Deng B; Fradkin M; Rouet JM; Moore RH; Kopans DB; Boas DA; Lundqvist M; Fang Q
    J Biomed Opt; 2015 Aug; 20(8):80502. PubMed ID: 26263413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Symmetry-based detection of ductal carcinoma in situ in breast MRI.
    Srikantha A; Harz M; Wang L; Platel B; Mann RM; Hahn HK; Peitgen HO
    Eur J Radiol; 2012 Sep; 81 Suppl 1():S158-9. PubMed ID: 23083573
    [No Abstract]   [Full Text] [Related]  

  • 4. Do shorter wavelengths improve contrast in optical mammography?
    Taroni P; Pifferi A; Torricelli A; Spinelli L; Danesini GM; Cubeddu R
    Phys Med Biol; 2004 Apr; 49(7):1203-15. PubMed ID: 15128198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near-infrared imaging of the human breast: complementing hemoglobin concentration maps with oxygenation images.
    Heffer E; Pera V; Schütz O; Siebold H; Fantini S
    J Biomed Opt; 2004; 9(6):1152-60. PubMed ID: 15568935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of diffuse optical tomography, ultrasound elastography and mammography in the diagnosis of breast tumors.
    Zhang H; Qin D; Yang Z; Wang K; Sun F; Li B; Cui G
    Ultrasound Med Biol; 2014 Jan; 40(1):1-10. PubMed ID: 24210860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near-infrared imaging of the breast using omocianine as a fluorescent dye: results of a placebo-controlled, clinical, multicenter trial.
    Poellinger A; Persigehl T; Mahler M; Bahner M; Ponder SL; Diekmann F; Bremer C; Moesta T
    Invest Radiol; 2011 Nov; 46(11):697-704. PubMed ID: 21788905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-infrared laser computed tomography of the breast first clinical experience.
    Poellinger A; Martin JC; Ponder SL; Freund T; Hamm B; Bick U; Diekmann F
    Acad Radiol; 2008 Dec; 15(12):1545-53. PubMed ID: 19000871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial and spectral information in optical mammography.
    Fantini S; Heffer EL; Pera VE; Sassaroli A; Liu N
    Technol Cancer Res Treat; 2005 Oct; 4(5):471-82. PubMed ID: 16173819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffuse optical tomography with spectral constraints and wavelength optimization.
    Corlu A; Choe R; Durduran T; Lee K; Schweiger M; Arridge SR; Hillman EM; Yodh AG
    Appl Opt; 2005 Apr; 44(11):2082-93. PubMed ID: 15835357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mono- and multimodal registration of optical breast images.
    Pearlman PC; Adams A; Elias SG; Mali WP; Viergever MA; Pluim JP
    J Biomed Opt; 2012 Aug; 17(8):080901-1. PubMed ID: 23224161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the three-time-point method for diagnosis of breast lesions in contrast-enhanced MR mammography.
    Hauth EA; Stockamp C; Maderwald S; Mühler A; Kimmig R; Jaeger H; Barkhausen J; Forsting M
    Clin Imaging; 2006; 30(3):160-5. PubMed ID: 16632149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-registration of MR-mammography and X-ray mammography.
    Dietzel M; Baltzer PA; Hopp T; Ruiter NV; Kaiser WA
    Eur J Radiol; 2012 Sep; 81 Suppl 1():S27-9. PubMed ID: 23083591
    [No Abstract]   [Full Text] [Related]  

  • 14. Biologically derived companding algorithm for high dynamic range mammography images.
    Kanelovitch L; Itzchak Y; Rundstein A; Sklair M; Spitzer H
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2253-61. PubMed ID: 23508248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple and robust classification tree for differentiation between benign and malignant lesions in MR-mammography.
    Baltzer PA; Dietzel M; Gröschel T; Kaiser WA
    Eur J Radiol; 2012 Sep; 81 Suppl 1():S4-5. PubMed ID: 23083596
    [No Abstract]   [Full Text] [Related]  

  • 16. Image reconstruction method for a two-layer tissue structure accounts for chest-wall effects in breast imaging.
    Xu C; Das M; Ardeshirpour Y; Zhu Q
    J Biomed Opt; 2008; 13(6):064029. PubMed ID: 19123675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Self-organizing neural networks for automatic detection and classification of contrast (media) enhancement of lesions in dynamic MR-mammography].
    Vomweg TW; Teifke A; Kauczor HU; Achenbach T; Rieker O; Schreiber WG; Heitmann KR; Beier T; Thelen M
    Rofo; 2005 May; 177(5):703-13. PubMed ID: 15871086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Breast mass segmentation in mammography using plane fitting and dynamic programming.
    Song E; Jiang L; Jin R; Zhang L; Yuan Y; Li Q
    Acad Radiol; 2009 Jul; 16(7):826-35. PubMed ID: 19362024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linear structures in mammographic images: detection and classification.
    Zwiggelaar R; Astley SM; Boggis CR; Taylor CJ
    IEEE Trans Med Imaging; 2004 Sep; 23(9):1077-86. PubMed ID: 15377116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computed-aided diagnosis (CAD) in the detection of breast cancer.
    Dromain C; Boyer B; Ferré R; Canale S; Delaloge S; Balleyguier C
    Eur J Radiol; 2013 Mar; 82(3):417-23. PubMed ID: 22939365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.