These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 12880717)
1. Reliability and accuracy of different sensors of a flexible electrogoniometer. Shiratsu A; Coury HJ Clin Biomech (Bristol, Avon); 2003 Aug; 18(7):682-4. PubMed ID: 12880717 [TBL] [Abstract][Full Text] [Related]
2. Precision and accuracy of an electrogoniometer. Christensen HW J Manipulative Physiol Ther; 1999 Jan; 22(1):10-4. PubMed ID: 10029943 [TBL] [Abstract][Full Text] [Related]
3. Validity and reliability of a new electrogoniometer for the measurement of sagittal dorsolumbar movements. Paquet N; Malouin F; Richards CL; Dionne JP; Comeau F Spine (Phila Pa 1976); 1991 May; 16(5):516-9. PubMed ID: 2052993 [TBL] [Abstract][Full Text] [Related]
4. Novel 3-dimensional motion analysis method for measuring the lumbar spine range of motion: repeatability and reliability compared with an electrogoniometer. Tojima M; Ogata N; Yozu A; Sumitani M; Haga N Spine (Phila Pa 1976); 2013 Oct; 38(21):E1327-33. PubMed ID: 23797505 [TBL] [Abstract][Full Text] [Related]
5. A simple device to monitor flexion and lateral bending of the lumbar spine. Donatell GJ; Meister DW; O'Brien JR; Thurlow JS; Webster JG; Fellow L; Salvi FJ IEEE Trans Neural Syst Rehabil Eng; 2005 Mar; 13(1):18-23. PubMed ID: 15813402 [TBL] [Abstract][Full Text] [Related]
6. Normal functional range of motion of the cervical spine during 15 activities of daily living. Bible JE; Biswas D; Miller CP; Whang PG; Grauer JN J Spinal Disord Tech; 2010 Feb; 23(1):15-21. PubMed ID: 20051924 [TBL] [Abstract][Full Text] [Related]
7. Normal functional range of motion of the lumbar spine during 15 activities of daily living. Bible JE; Biswas D; Miller CP; Whang PG; Grauer JN J Spinal Disord Tech; 2010 Apr; 23(2):106-12. PubMed ID: 20065869 [TBL] [Abstract][Full Text] [Related]
8. Reliability of an accelerometer-based system for quantifying multiregional spinal range of motion. Alqhtani RS; Jones MD; Theobald PS; Williams JM J Manipulative Physiol Ther; 2015 May; 38(4):275-81. PubMed ID: 25936464 [TBL] [Abstract][Full Text] [Related]
9. Improving goniometer accuracy by compensating for individual transducer characteristics. Sato Tde O; Coury HJ; Hansson GA J Electromyogr Kinesiol; 2009 Aug; 19(4):704-9. PubMed ID: 18316206 [TBL] [Abstract][Full Text] [Related]
10. A cam-displacement transducer device for measuring small two-degree of freedom inter-component motion in a prosthesis. Twiste M; Rithalia SV; Kenney L Med Eng Phys; 2004 May; 26(4):335-40. PubMed ID: 15121059 [TBL] [Abstract][Full Text] [Related]
11. The placement of skin surface markers for non-invasive measurement of scapular kinematics affects accuracy and reliability. Bourne DA; Choo AM; Regan WD; MacIntyre DL; Oxland TR Ann Biomed Eng; 2011 Feb; 39(2):777-85. PubMed ID: 20967500 [TBL] [Abstract][Full Text] [Related]
12. Validity and between-day reliability of the cervical range of motion (CROM) device. Audette I; Dumas JP; Côté JN; De Serres SJ J Orthop Sports Phys Ther; 2010 May; 40(5):318-23. PubMed ID: 20436238 [TBL] [Abstract][Full Text] [Related]
13. Reliability of the American Medical Association guides' model for measuring spinal range of motion. Its implication for whole-person impairment rating. Nitschke JE; Nattrass CL; Disler PB; Chou MJ; Ooi KT Spine (Phila Pa 1976); 1999 Feb; 24(3):262-8. PubMed ID: 10025021 [TBL] [Abstract][Full Text] [Related]
14. Spinal range of motion. Accuracy and sources of error with inclinometric measurement. Mayer TG; Kondraske G; Beals SB; Gatchel RJ Spine (Phila Pa 1976); 1997 Sep; 22(17):1976-84. PubMed ID: 9306526 [TBL] [Abstract][Full Text] [Related]
15. Development of kinematics tests for the evaluation of lumbar proprioception and equilibration. Feipel V; Parent C; Dugailly PM; Brassinne E; Salvia P; Rooze M Clin Biomech (Bristol, Avon); 2003 Aug; 18(7):612-8. PubMed ID: 12880708 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of a robot-assisted testing system for multisegmental spine specimens. Schulze M; Hartensuer R; Gehweiler D; Hölscher U; Raschke MJ; Vordemvenne T J Biomech; 2012 May; 45(8):1457-62. PubMed ID: 22387121 [TBL] [Abstract][Full Text] [Related]
17. Comparison of quantitative evaluation between cutaneous and transosseous inertial sensors in anterior cruciate ligament deficient knee: A cadaveric study. Murase A; Nozaki M; Kobayashi M; Goto H; Yoshida M; Yasuma S; Takenaga T; Nagaya Y; Mizutani J; Okamoto H; Iguchi H; Otsuka T J Orthop Sci; 2017 Sep; 22(5):874-879. PubMed ID: 28559103 [TBL] [Abstract][Full Text] [Related]
18. Development and validation of a new technique for assessing lumbar spine motion. Lee SW; Wong KW; Chan MK; Yeung HM; Chiu JL; Leong JC Spine (Phila Pa 1976); 2002 Apr; 27(8):E215-20. PubMed ID: 11935121 [TBL] [Abstract][Full Text] [Related]
19. Neck mobility measurement by means of the 'Flock of Birds' electromagnetic tracking system. Koerhuis CL; Winters JC; van der Helm FC; Hof AL Clin Biomech (Bristol, Avon); 2003 Jan; 18(1):14-8. PubMed ID: 12527242 [TBL] [Abstract][Full Text] [Related]
20. Defining the Neutral Zone of sheep intervertebral joints during dynamic motions: an in vitro study. Thompson RE; Barker TM; Pearcy MJ Clin Biomech (Bristol, Avon); 2003 Feb; 18(2):89-98. PubMed ID: 12550806 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]