These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 12880830)
21. SUPRA: open-source software-defined ultrasound processing for real-time applications : A 2D and 3D pipeline from beamforming to B-mode. Göbl R; Navab N; Hennersperger C Int J Comput Assist Radiol Surg; 2018 Jun; 13(6):759-767. PubMed ID: 29594853 [TBL] [Abstract][Full Text] [Related]
22. A Multi-Atlas Label Fusion Tool for Neonatal Brain MRI Parcellation and Quantification. Otsuka Y; Chang L; Kawasaki Y; Wu D; Ceritoglu C; Oishi K; Ernst T; Miller M; Mori S; Oishi K J Neuroimaging; 2019 Jul; 29(4):431-439. PubMed ID: 31037800 [TBL] [Abstract][Full Text] [Related]
23. UBO Detector - A cluster-based, fully automated pipeline for extracting white matter hyperintensities. Jiang J; Liu T; Zhu W; Koncz R; Liu H; Lee T; Sachdev PS; Wen W Neuroimage; 2018 Jul; 174():539-549. PubMed ID: 29578029 [TBL] [Abstract][Full Text] [Related]
24. Interacting with the National Database for Autism Research (NDAR) via the LONI Pipeline workflow environment. Torgerson CM; Quinn C; Dinov I; Liu Z; Petrosyan P; Pelphrey K; Haselgrove C; Kennedy DN; Toga AW; Van Horn JD Brain Imaging Behav; 2015 Mar; 9(1):89-103. PubMed ID: 25666423 [TBL] [Abstract][Full Text] [Related]
25. Accelerating image registration of MRI by GPU-based parallel computation. Huang TY; Tang YW; Ju SY Magn Reson Imaging; 2011 Jun; 29(5):712-6. PubMed ID: 21531103 [TBL] [Abstract][Full Text] [Related]
26. NeuroPycon: An open-source python toolbox for fast multi-modal and reproducible brain connectivity pipelines. Meunier D; Pascarella A; Altukhov D; Jas M; Combrisson E; Lajnef T; Bertrand-Dubois D; Hadid V; Alamian G; Alves J; Barlaam F; Saive AL; Dehgan A; Jerbi K Neuroimage; 2020 Oct; 219():117020. PubMed ID: 32522662 [TBL] [Abstract][Full Text] [Related]
33. The bootstrap and cross-validation in neuroimaging applications: estimation of the distribution of extrema of random fields for single volume tests, with an application to ADC maps. Viviani R; Beschoner P; Jaeckle T; Hipp P; Kassubek J; Schmitz B Hum Brain Mapp; 2007 Oct; 28(10):1075-88. PubMed ID: 17266105 [TBL] [Abstract][Full Text] [Related]
34. Quantitative comparison and evaluation of software packages for assessment of abdominal adipose tissue distribution by magnetic resonance imaging. Bonekamp S; Ghosh P; Crawford S; Solga SF; Horska A; Brancati FL; Diehl AM; Smith S; Clark JM Int J Obes (Lond); 2008 Jan; 32(1):100-11. PubMed ID: 17700582 [TBL] [Abstract][Full Text] [Related]
35. An automated pipeline for constructing personalized virtual brains from multimodal neuroimaging data. Schirner M; Rothmeier S; Jirsa VK; McIntosh AR; Ritter P Neuroimage; 2015 Aug; 117():343-57. PubMed ID: 25837600 [TBL] [Abstract][Full Text] [Related]
36. Development of a user-friendly system for image processing of electron microscopy by integrating a web browser and PIONE with Eos. Tsukamoto T; Yasunaga T Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i32-i33. PubMed ID: 25359837 [TBL] [Abstract][Full Text] [Related]
38. Server-based approach to web visualization of integrated three-dimensional brain imaging data. Poliakov AV; Albright E; Hinshaw KP; Corina DP; Ojemann G; Martin RF; Brinkley JF J Am Med Inform Assoc; 2005; 12(2):140-51. PubMed ID: 15561787 [TBL] [Abstract][Full Text] [Related]
39. Fully automated rodent brain MR image processing pipeline on a Midas server: from acquired images to region-based statistics. Budin F; Hoogstoel M; Reynolds P; Grauer M; O'Leary-Moore SK; Oguz I Front Neuroinform; 2013; 7():15. PubMed ID: 23964234 [TBL] [Abstract][Full Text] [Related]