BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 1288087)

  • 1. The oxygen dependence of mitochondrial oxidative phosphorylation and its role in regulation of coronary blood flow.
    Rumsey WL; Schlosser C; Nuutinen EM; Robiolio M; Wilson DF
    Adv Exp Med Biol; 1992; 316():279-84. PubMed ID: 1288087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular energetics and the oxygen dependence of respiration in cardiac myocytes isolated from adult rat.
    Rumsey WL; Schlosser C; Nuutinen EM; Robiolio M; Wilson DF
    J Biol Chem; 1990 Sep; 265(26):15392-402. PubMed ID: 2394731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial oxidative phosphorylation: tissue oxygen sensor for regulation of coronary flow.
    Nuutinen EM; Wilson DF; Erecińska M
    Adv Exp Med Biol; 1984; 169():351-7. PubMed ID: 6731096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen peroxide: a feed-forward dilator that couples myocardial metabolism to coronary blood flow.
    Saitoh S; Zhang C; Tune JD; Potter B; Kiyooka T; Rogers PA; Knudson JD; Dick GM; Swafford A; Chilian WM
    Arterioscler Thromb Vasc Biol; 2006 Dec; 26(12):2614-21. PubMed ID: 17023676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of diffusion to the oxygen dependence of energy metabolism in human neuroblastoma cells.
    Rumsey WL; Robiolio M; Wilson DF
    Adv Exp Med Biol; 1989; 248():829-33. PubMed ID: 2782191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased sensitivity of mitochondrial respiration to inhibition by nitric oxide in cardiac hypertrophy.
    Brookes PS; Zhang J; Dai L; Zhou F; Parks DA; Darley-Usmar VM; Anderson PG
    J Mol Cell Cardiol; 2001 Jan; 33(1):69-82. PubMed ID: 11133224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of oxidative metabolism in volume-overloaded rat hearts: effect of propionyl-L-carnitine.
    El Alaoui-Talibi Z; Guendouz A; Moravec M; Moravec J
    Am J Physiol; 1997 Apr; 272(4 Pt 2):H1615-24. PubMed ID: 9139943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on energy-linked reactions: inhibition of oxidative phosphorylation and energy-linked reactions by dibutyltin dichloride.
    Cain K; Hyams RL; Griffiths DE
    FEBS Lett; 1977 Oct; 82(1):23-8. PubMed ID: 144065
    [No Abstract]   [Full Text] [Related]  

  • 9. The relationship between mitochondrial state, ATP hydrolysis, [Mg2+]i and [Ca2+]i studied in isolated rat cardiomyocytes.
    Leyssens A; Nowicky AV; Patterson L; Crompton M; Duchen MR
    J Physiol; 1996 Oct; 496 ( Pt 1)(Pt 1):111-28. PubMed ID: 8910200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen requirements of the isolated rat heart during hypothermic cardioplegia. Effect of oxygenation on metabolic and functional recovery after five hours of arrest.
    de Wit L; Coetzee A; Kotze J; Lochner A
    J Thorac Cardiovasc Surg; 1988 Feb; 95(2):310-20. PubMed ID: 3339898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen sensitivity of mitochondrial metabolic state in isolated skeletal and cardiac myocytes.
    Richmond KN; Burnite S; Lynch RM
    Am J Physiol; 1997 Nov; 273(5):C1613-22. PubMed ID: 9374647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolite accumulation in VLCAD deficiency markedly disrupts mitochondrial bioenergetics and Ca
    Cecatto C; Amaral AU; da Silva JC; Wajner A; Schimit MOV; da Silva LHR; Wajner SM; Zanatta Â; Castilho RF; Wajner M
    FEBS J; 2018 Apr; 285(8):1437-1455. PubMed ID: 29476646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dependence of cellular metabolism and local oxygen delivery on oxygen tension.
    Wilson DF; Erecińska M; Nuutinen EM; Silver IA
    Adv Exp Med Biol; 1984; 180():629-34. PubMed ID: 6534135
    [No Abstract]   [Full Text] [Related]  

  • 14. Mitochondrial cytochrome c oxidase and control of energy metabolism: measurements in suspensions of isolated mitochondria.
    Wilson DF; Harrison DK; Vinogradov A
    J Appl Physiol (1985); 2014 Dec; 117(12):1424-30. PubMed ID: 25324517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [A correlation between respiration and synthesis of ATP in mitochondria at different degree of uncoupling of oxidative phosphorylation].
    Samartsev VN; Kozhina OV; Polishchuk LS
    Biofizika; 2005; 50(4):660-7. PubMed ID: 16212057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myocardial accumulation of bupivacaine and ropivacaine is associated with reversible effects on mitochondria and reduced myocardial function.
    Hiller N; Mirtschink P; Merkel C; Knels L; Oertel R; Christ T; Deussen A; Koch T; Stehr SN
    Anesth Analg; 2013 Jan; 116(1):83-92. PubMed ID: 23223114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca(2+) activation of heart mitochondrial oxidative phosphorylation: role of the F(0)/F(1)-ATPase.
    Territo PR; Mootha VK; French SA; Balaban RS
    Am J Physiol Cell Physiol; 2000 Feb; 278(2):C423-35. PubMed ID: 10666039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncoupler- and hypoxia-induced damage in the working rat heart and its treatment. I. Observations with uncouplers of oxidative phosphorylation.
    Veit P; Fuchs J; Zimmer G
    Basic Res Cardiol; 1985; 80(2):107-15. PubMed ID: 4004721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of mitochondrial activity in cardiac cells.
    Mela-Riker LM; Bukoski RD
    Annu Rev Physiol; 1985; 47():645-63. PubMed ID: 3888081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATP depletion and mitochondrial functional loss during ischemia in slow and fast heart-rate hearts.
    Rouslin W; Broge CW; Grupp IL
    Am J Physiol; 1990 Dec; 259(6 Pt 2):H1759-66. PubMed ID: 2148059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.