These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 12880892)
1. Competition for priority in processing increases prefrontal cortex's involvement in top-down control: an event-related fMRI study of the stroop task. Milham MP; Banich MT; Barad V Brain Res Cogn Brain Res; 2003 Jul; 17(2):212-22. PubMed ID: 12880892 [TBL] [Abstract][Full Text] [Related]
2. Turning down the heat: Neural mechanisms of cognitive control for inhibiting task-irrelevant emotional information during adolescence. Banich MT; Smolker HR; Snyder HR; Lewis-Peacock JA; Godinez DA; Wager TD; Hankin BL Neuropsychologia; 2019 Mar; 125():93-108. PubMed ID: 30615898 [TBL] [Abstract][Full Text] [Related]
3. Cognitive conflict increases processing of negative, task-irrelevant stimuli. Ligeza TS; Wyczesany M Int J Psychophysiol; 2017 Oct; 120():126-135. PubMed ID: 28757233 [TBL] [Abstract][Full Text] [Related]
4. Anterior cingulate cortex: an fMRI analysis of conflict specificity and functional differentiation. Milham MP; Banich MT Hum Brain Mapp; 2005 Jul; 25(3):328-35. PubMed ID: 15834861 [TBL] [Abstract][Full Text] [Related]
5. Orchestrating Proactive and Reactive Mechanisms for Filtering Distracting Information: Brain-Behavior Relationships Revealed by a Mixed-Design fMRI Study. Marini F; Demeter E; Roberts KC; Chelazzi L; Woldorff MG J Neurosci; 2016 Jan; 36(3):988-1000. PubMed ID: 26791226 [TBL] [Abstract][Full Text] [Related]
6. Task-dependent response conflict monitoring and cognitive control in anterior cingulate and dorsolateral prefrontal cortices. Kim C; Chung C; Kim J Brain Res; 2013 Nov; 1537():216-23. PubMed ID: 24012877 [TBL] [Abstract][Full Text] [Related]
7. Activation of the caudal anterior cingulate cortex due to task-related interference in an auditory Stroop paradigm. Haupt S; Axmacher N; Cohen MX; Elger CE; Fell J Hum Brain Mapp; 2009 Sep; 30(9):3043-56. PubMed ID: 19180558 [TBL] [Abstract][Full Text] [Related]
8. Functional dissociation of attentional selection within PFC: response and non-response related aspects of attentional selection as ascertained by fMRI. Liu X; Banich MT; Jacobson BL; Tanabe JL Cereb Cortex; 2006 Jun; 16(6):827-34. PubMed ID: 16135781 [TBL] [Abstract][Full Text] [Related]
9. Common and distinct neural substrates of attentional control in an integrated Simon and spatial Stroop task as assessed by event-related fMRI. Liu X; Banich MT; Jacobson BL; Tanabe JL Neuroimage; 2004 Jul; 22(3):1097-106. PubMed ID: 15219581 [TBL] [Abstract][Full Text] [Related]
10. fMri studies of Stroop tasks reveal unique roles of anterior and posterior brain systems in attentional selection. Banich MT; Milham MP; Atchley R; Cohen NJ; Webb A; Wszalek T; Kramer AF; Liang ZP; Wright A; Shenker J; Magin R J Cogn Neurosci; 2000 Nov; 12(6):988-1000. PubMed ID: 11177419 [TBL] [Abstract][Full Text] [Related]
11. Lateralized contribution of prefrontal cortex in controlling task-irrelevant information during verbal and spatial working memory tasks: rTMS evidence. Sandrini M; Rossini PM; Miniussi C Neuropsychologia; 2008; 46(7):2056-63. PubMed ID: 18336847 [TBL] [Abstract][Full Text] [Related]
12. Conflict monitoring in the human anterior cingulate cortex during selective attention to global and local object features. Weissman DH; Giesbrecht B; Song AW; Mangun GR; Woldorff MG Neuroimage; 2003 Aug; 19(4):1361-8. PubMed ID: 12948694 [TBL] [Abstract][Full Text] [Related]
13. Attentional selection and the processing of task-irrelevant information: insights from fMRI examinations of the Stroop task. Banich MT; Milham MP; Jacobson BL; Webb A; Wszalek T; Cohen NJ; Kramer AF Prog Brain Res; 2001; 134():459-70. PubMed ID: 11702561 [TBL] [Abstract][Full Text] [Related]
14. Oddball and incongruity effects during Stroop task performance: a comparative fMRI study on selective attention. Melcher T; Gruber O Brain Res; 2006 Nov; 1121(1):136-49. PubMed ID: 17022954 [TBL] [Abstract][Full Text] [Related]
16. Anterior cingulate and posterior parietal cortices are sensitive to dissociable forms of conflict in a task-switching paradigm. Liston C; Matalon S; Hare TA; Davidson MC; Casey BJ Neuron; 2006 May; 50(4):643-53. PubMed ID: 16701213 [TBL] [Abstract][Full Text] [Related]
17. Attentional control in the aging brain: insights from an fMRI study of the stroop task. Milham MP; Erickson KI; Banich MT; Kramer AF; Webb A; Wszalek T; Cohen NJ Brain Cogn; 2002 Aug; 49(3):277-96. PubMed ID: 12139955 [TBL] [Abstract][Full Text] [Related]
18. The neural mechanisms of semantic and response conflicts: an fMRI study of practice-related effects in the Stroop task. Chen Z; Lei X; Ding C; Li H; Chen A Neuroimage; 2013 Feb; 66():577-84. PubMed ID: 23103691 [TBL] [Abstract][Full Text] [Related]
19. Decomposing interference during Stroop performance into different conflict factors: an event-related fMRI study. Melcher T; Gruber O Cortex; 2009 Feb; 45(2):189-200. PubMed ID: 19150520 [TBL] [Abstract][Full Text] [Related]
20. Anterior cingulate and prefrontal cortex activity in an FMRI study of trial-to-trial adjustments on the Simon task. Kerns JG Neuroimage; 2006 Oct; 33(1):399-405. PubMed ID: 16876434 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]