These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 12880906)

  • 1. Visual short-term memory load affects sensory processing of irrelevant sounds in human auditory cortex.
    Valtonen J; May P; Mäkinen V; Tiitinen H
    Brain Res Cogn Brain Res; 2003 Jul; 17(2):358-67. PubMed ID: 12880906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perceptual load interacts with stimulus processing across sensory modalities.
    Klemen J; Büchel C; Rose M
    Eur J Neurosci; 2009 Jun; 29(12):2426-34. PubMed ID: 19490081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-stage processing of sounds explains behavioral performance variations due to changes in stimulus contrast and selective attention: an MEG study.
    Kauramäki J; Jääskeläinen IP; Hänninen JL; Auranen T; Nummenmaa A; Lampinen J; Sams M
    PLoS One; 2012; 7(10):e46872. PubMed ID: 23071654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression of irrelevant sounds during auditory working memory.
    Ahveninen J; Seidman LJ; Chang WT; Hämäläinen M; Huang S
    Neuroimage; 2017 Nov; 161():1-8. PubMed ID: 28818692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electromagnetic responses of the human auditory cortex generated by sensory-memory based processing of tone-frequency changes.
    Korzyukov O; Alho K; Kujala A; Gumenyuk V; Ilmoniemi RJ; Virtanen J; Kropotov J; Näätänen R
    Neurosci Lett; 1999 Dec; 276(3):169-72. PubMed ID: 10612632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of attention on the auditory steady-state response.
    Ross B; Picton TW; Herdman AT; Pantev C
    Neurol Clin Neurophysiol; 2004 Nov; 2004():22. PubMed ID: 16012602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The retention of simultaneous tones in auditory short-term memory: a magnetoencephalography study.
    Nolden S; Grimault S; Guimond S; Lefebvre C; Bermudez P; Jolicoeur P
    Neuroimage; 2013 Nov; 82():384-92. PubMed ID: 23751862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silent music reading: auditory imagery and visuotonal modality transfer in singers and non-singers.
    Hoppe C; Splittstößer C; Fliessbach K; Trautner P; Elger CE; Weber B
    Brain Cogn; 2014 Nov; 91():35-44. PubMed ID: 25222292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attentional modulation of human auditory cortex.
    Petkov CI; Kang X; Alho K; Bertrand O; Yund EW; Woods DL
    Nat Neurosci; 2004 Jun; 7(6):658-63. PubMed ID: 15156150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial processing in human auditory cortex: the effects of 3D, ITD, and ILD stimulation techniques.
    Palomäki KJ; Tiitinen H; Mäkinen V; May PJ; Alku P
    Brain Res Cogn Brain Res; 2005 Aug; 24(3):364-79. PubMed ID: 16099350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alpha synchronization during auditory spatial short-term memory.
    Kaiser J; Heidegger T; Wibral M; Altmann CF; Lutzenberger W
    Neuroreport; 2007 Jul; 18(11):1129-32. PubMed ID: 17589312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The auditory evoked magnetic fields to very high frequency tones.
    Fujioka T; Kakigi R; Gunji A; Takeshima Y
    Neuroscience; 2002; 112(2):367-81. PubMed ID: 12044454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulus-specific suppression preserves information in auditory short-term memory.
    Linke AC; Vicente-Grabovetsky A; Cusack R
    Proc Natl Acad Sci U S A; 2011 Aug; 108(31):12961-6. PubMed ID: 21768383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cortical DC potential shifts accompanying auditory and visual short-term memory.
    Lang W; Starr A; Lang V; Lindinger G; Deecke L
    Electroencephalogr Clin Neurophysiol; 1992 Apr; 82(4):285-95. PubMed ID: 1372549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase-Amplitude Coupling and Long-Range Phase Synchronization Reveal Frontotemporal Interactions during Visual Working Memory.
    Daume J; Gruber T; Engel AK; Friese U
    J Neurosci; 2017 Jan; 37(2):313-322. PubMed ID: 28077711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of task modality and stimulus frequency in paced serial addition tests on functional brain activity.
    Gielen J; Wiels W; Van Schependom J; Laton J; Van Hecke W; Parizel PM; D'hooghe MB; Nagels G
    PLoS One; 2018; 13(3):e0194388. PubMed ID: 29543871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tonotopic auditory cortex and the magnetoencephalographic (MEG) equivalent of the mismatch negativity.
    Tiitinen H; Alho K; Huotilainen M; Ilmoniemi RJ; Simola J; Näätänen R
    Psychophysiology; 1993 Sep; 30(5):537-40. PubMed ID: 8416081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-related frontal hyperactivation observed across different working memory tasks: an fMRI study.
    Fakhri M; Sikaroodi H; Maleki F; Ali Oghabian M; Ghanaati H
    Behav Neurol; 2012; 25(4):351-61. PubMed ID: 22885811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Latency of modality-specific reactivation of auditory and visual information during episodic memory retrieval.
    Ueno D; Masumoto K; Sutani K; Iwaki S
    Neuroreport; 2015 Apr; 26(6):303-8. PubMed ID: 25756907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The functional neuroanatomy of multitasking: combining dual tasking with a short term memory task.
    Deprez S; Vandenbulcke M; Peeters R; Emsell L; Amant F; Sunaert S
    Neuropsychologia; 2013 Sep; 51(11):2251-60. PubMed ID: 23938320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.