These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 1288092)

  • 1. The role of wall shear stress in microvascular network adaptation.
    Hudetz AG; Kiani MF
    Adv Exp Med Biol; 1992; 316():31-9. PubMed ID: 1288092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural adaptation of microvascular networks: functional roles of adaptive responses.
    Pries AR; Reglin B; Secomb TW
    Am J Physiol Heart Circ Physiol; 2001 Sep; 281(3):H1015-25. PubMed ID: 11514266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A model of physical factors in the structural adaptation of microvascular networks in normotension and hypertension.
    Jacobsen JC; Gustafsson F; Holstein-Rathlou NH
    Physiol Meas; 2003 Nov; 24(4):891-912. PubMed ID: 14658781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remodeling of blood vessels: responses of diameter and wall thickness to hemodynamic and metabolic stimuli.
    Pries AR; Reglin B; Secomb TW
    Hypertension; 2005 Oct; 46(4):725-31. PubMed ID: 16172421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural response of microcirculatory networks to changes in demand: information transfer by shear stress.
    Pries AR; Reglin B; Secomb TW
    Am J Physiol Heart Circ Physiol; 2003 Jun; 284(6):H2204-12. PubMed ID: 12573998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural adaptation and stability of microvascular networks: theory and simulations.
    Pries AR; Secomb TW; Gaehtgens P
    Am J Physiol; 1998 Aug; 275(2):H349-60. PubMed ID: 9683420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural adaptation of microvascular networks and development of hypertension.
    Pries AR; Secomb TW
    Microcirculation; 2002; 9(4):305-14. PubMed ID: 12152106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microvascular adaptation--regulation, coordination and function.
    Pries AR; Secomb TW
    Z Kardiol; 2000; 89 Suppl 9():IX/117-20. PubMed ID: 11151780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of endothelial connexin40 expression by shear stress.
    Vorderwülbecke BJ; Maroski J; Fiedorowicz K; Da Silva-Azevedo L; Marki A; Pries AR; Zakrzewicz A
    Am J Physiol Heart Circ Physiol; 2012 Jan; 302(1):H143-52. PubMed ID: 22021330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A tissue in the tissue: models of microvascular plasticity.
    Jacobsen JC; Hornbech MS; Holstein-Rathlou NH
    Eur J Pharm Sci; 2009 Jan; 36(1):51-61. PubMed ID: 19049866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shear stress is not sufficient to control growth of vascular networks: a model study.
    Hacking WJ; VanBavel E; Spaan JA
    Am J Physiol; 1996 Jan; 270(1 Pt 2):H364-75. PubMed ID: 8769773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Obligatory role of hyperaemia and shear stress in microvascular adaptation to repeated heating in humans.
    Green DJ; Carter HH; Fitzsimons MG; Cable NT; Thijssen DH; Naylor LH
    J Physiol; 2010 May; 588(Pt 9):1571-7. PubMed ID: 20211982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blood vessel adaptation with fluctuations in capillary flow distribution.
    Hu D; Cai D; Rangan AV
    PLoS One; 2012; 7(9):e45444. PubMed ID: 23029014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of red blood cell deformation at high-hematocrit blood flow in microvessels.
    Alizadehrad D; Imai Y; Nakaaki K; Ishikawa T; Yamaguchi T
    J Biomech; 2012 Oct; 45(15):2684-9. PubMed ID: 22981440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling structural adaptation of microcirculation.
    Pries AR; Secomb TW
    Microcirculation; 2008 Nov; 15(8):753-64. PubMed ID: 18802843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design principles of vascular beds.
    Pries AR; Secomb TW; Gaehtgens P
    Circ Res; 1995 Nov; 77(5):1017-23. PubMed ID: 7554136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circumferential wall stress as a mechanism for arteriolar rarefaction and proliferation in a network model.
    Price RJ; Skalak TC
    Microvasc Res; 1994 Mar; 47(2):188-202. PubMed ID: 8022319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intussusceptive angiogenesis: pillars against the blood flow.
    Styp-Rekowska B; Hlushchuk R; Pries AR; Djonov V
    Acta Physiol (Oxf); 2011 Jul; 202(3):213-23. PubMed ID: 21535415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a general method for designing microvascular networks using distribution of wall shear stress.
    Sayed Razavi M; Shirani E
    J Biomech; 2013 Sep; 46(13):2303-9. PubMed ID: 23891174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical analysis of complex oscillations in multibranched microvascular networks.
    Ursino M; Cavalcanti S; Bertuglia S; Colantuoni A
    Microvasc Res; 1996 Mar; 51(2):229-49. PubMed ID: 8778577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.