BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 12880944)

  • 1. Binding studies on peptide-oligonucleotide complex: intercalation of tryptophan in GC-rich region of c-myc gene.
    Jain AA; Rajeswari MR
    Biochim Biophys Acta; 2003 Jul; 1622(2):73-81. PubMed ID: 12880944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tryptophan intercalation in G, C containing polynucleotides: Z to B conversion of poly [d(G-5M C)] in low salt induced by a tetra peptide.
    Rajeswari MR
    J Biomol Struct Dyn; 1996 Aug; 14(1):25-30. PubMed ID: 8877559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Does tryptophan intercalate in DNA? A comparative study of peptide binding to alternating and nonalternating A.T sequences.
    Rajeswari MR; Montenay-Garestier T; Hélène C
    Biochemistry; 1987 Oct; 26(21):6825-31. PubMed ID: 3427045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hairpin and duplex forms of a self-complementary dodecamer, d-AGATCTAGATCT, and interaction of the duplex form with the peptide KGWGK: can a pentapeptide destabilize DNA?
    Roy KB; Kukreti S; Bose HS; Chauhan VS; Rajeswari MR
    Biochemistry; 1992 Jul; 31(27):6241-5. PubMed ID: 1627565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding of oligopeptides to d-AGATCTAGATCT and d-AAGCTTAAGCTT: can tryptophan intercalate in DNA hairpins?
    Rajeswari MR; Bose HS; Kukreti S; Gupta A; Chauhan VS; Roy KB
    Biochemistry; 1992 Jul; 31(27):6237-41. PubMed ID: 1320931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stabilization of purine motif DNA triplex by a tetrapeptide from the binding domain of HMGBI protein.
    Jain A; Akanchha S; Rajeswari MR
    Biochimie; 2005 Aug; 87(8):781-90. PubMed ID: 15885869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A spectroscopic investigation of the interaction between c-MYC DNA and tetrapyridinoporphyrazinatozinc(II).
    Hassani L; Fazeli Z; Safaei E; Rastegar H; Akbari M
    J Biol Phys; 2014 Jun; 40(3):275-83. PubMed ID: 24824526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic and structural studies on the interaction of an anticancer β-carboline alkaloid, harmine with GC and AT specific DNA oligonucleotides.
    Sharma S; Yadav M; Gupta SP; Pandav K; Kumar S
    Chem Biol Interact; 2016 Dec; 260():256-262. PubMed ID: 27590873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A nuclease hypersensitive element in the human c-myc promoter adopts several distinct i-tetraplex structures.
    Simonsson T; Pribylova M; Vorlickova M
    Biochem Biophys Res Commun; 2000 Nov; 278(1):158-66. PubMed ID: 11071868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding and thermodynamics of REV peptide-ctDNA interaction.
    Upadhyay SK
    Biopolymers; 2017 Mar; 108(2):. PubMed ID: 27353011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating actinomycin D binding to G-quadruplex, i-motif and double-stranded DNA in 27-nt segment of c-MYC gene promoter.
    Niknezhad Z; Hassani L; Norouzi D
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():1188-93. PubMed ID: 26478420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular aspects of the interaction of Hoechst-33258 with GC-rich promoter region of c-met.
    Singhal G; Rajeswari MR
    DNA Cell Biol; 2010 Feb; 29(2):91-100. PubMed ID: 19895336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CD and melting curves structural studies of the tandem DNA complex formed with oligonucleotides carrying photoactive and sensitizing groups in the nick region.
    Koval VV; Pyshnyi D; Fedorova O
    J Biomol Struct Dyn; 2001 Dec; 19(3):515-26. PubMed ID: 11790149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic studies for the role of cellular nucleic-acid-binding protein (CNBP) in regulation of c-myc transcription.
    Chen S; Su L; Qiu J; Xiao N; Lin J; Tan JH; Ou TM; Gu LQ; Huang ZS; Li D
    Biochim Biophys Acta; 2013 Oct; 1830(10):4769-77. PubMed ID: 23774591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complex formation and vectorization of a phosphorothioate oligonucleotide with an amphipathic leucine- and lysine-rich peptide: study at molecular and cellular levels.
    Boukhalfa-Heniche FZ; Hernández B; Gaillard S; Coïc YM; Huynh-Dinh T; Lecouvey M; Seksek O; Ghomi M
    Biopolymers; 2004 Apr; 73(6):727-34. PubMed ID: 15048776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamics of i-tetraplex formation in the nuclease hypersensitive element of human c-myc promoter.
    Mathur V; Verma A; Maiti S; Chowdhury S
    Biochem Biophys Res Commun; 2004 Aug; 320(4):1220-7. PubMed ID: 15249220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The vacuum UV CD spectra of G.G.C triplexes.
    Johnson KH; Durland RH; Hogan ME
    Nucleic Acids Res; 1992 Aug; 20(15):3859-64. PubMed ID: 1508671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tetraplatinated artificial oligopeptides afford high affinity intercalation into dsDNA.
    Levine LA; Morgan CM; Ohr K; Williams ME
    J Am Chem Soc; 2005 Dec; 127(48):16764-5. PubMed ID: 16316204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The high stability of the triple helices formed between short purine oligonucleotides and SIV/HIV-2 vpx genes is determined by the targeted DNA structure.
    Svinarchuk F; Monnot M; Merle A; Malvy C; Fermandjian S
    Nucleic Acids Res; 1995 Oct; 23(19):3831-6. PubMed ID: 7479024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quadruplex-duplex competition in the nuclease hypersensitive element of human c-myc promoter: C to T mutation in C-rich strand enhances duplex association.
    Halder K; Mathur V; Chugh D; Verma A; Chowdhury S
    Biochem Biophys Res Commun; 2005 Feb; 327(1):49-56. PubMed ID: 15629428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.