BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 1288098)

  • 1. Measurements of tumor blood flow using intraperitoneal deuterium and 2H-NMR spectroscopy.
    Okunieff P; Lee J; Itoh M; Vaupel P
    Adv Exp Med Biol; 1992; 316():373-83. PubMed ID: 1288098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Angiogenesis determines blood flow, metabolism, growth rate, and ATPase kinetics of tumors growing in an irradiated bed: 31P and 2H nuclear magnetic resonance studies.
    Okunieff P; Dols S; Lee J; Singer S; Vaupel P; Neuringer LJ; Beshah K
    Cancer Res; 1991 Jun; 51(12):3289-95. PubMed ID: 1710169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of murine radiation-induced fibrosarcoma-1 tumor metabolism and blood flow in situ via glucose and mannitol administration monitored by 31P and 2H nuclear magnetic resonance spectroscopy.
    Hwang YC; Kim SG; Evelhoch JL; Seyedsadr M; Ackerman JJ
    Cancer Res; 1991 Jun; 51(12):3108-18. PubMed ID: 1904001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of tumor energy metabolism and microvascular blood flow after glucose or mannitol administration using 31P nuclear magnetic resonance spectroscopy and laser Doppler flowmetry.
    Okunieff P; Vaupel P; Sedlacek R; Neuringer LJ
    Int J Radiat Oncol Biol Phys; 1989 Jun; 16(6):1493-500. PubMed ID: 2498241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonglycolytic acidification of murine radiation-induced fibrosarcoma 1 tumor via 3-O-methyl-D-glucose monitored by 1H, 2H, 13C, and 31P nuclear magnetic resonance spectroscopy.
    Hwang YY; Kim SG; Evelhoch JL; Ackerman JJ
    Cancer Res; 1992 Mar; 52(5):1259-66. PubMed ID: 1737388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relative volume-average murine tumor blood flow measurement via deuterium nuclear magnetic resonance spectroscopy.
    Mattiello J; Evelhoch JL
    Magn Reson Med; 1991 Apr; 18(2):320-34. PubMed ID: 1646371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multicompartment analysis of blood flow and tissue perfusion employing D2O as a freely diffusible tracer: a novel deuterium NMR technique demonstrated via application with murine RIF-1 tumors.
    Kim SG; Ackerman JJ
    Magn Reson Med; 1988 Dec; 8(4):410-26. PubMed ID: 3231069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-invasive tumour blood perfusion measurement by 2H magnetic resonance.
    Bentzen L; Horsman MR; Daugaard P; Maxwell RJ
    NMR Biomed; 2000 Dec; 13(8):429-37. PubMed ID: 11252028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A method for direct in vivo measurement of drug concentrations from a single 2H NMR spectrum.
    Evelhoch JL; McCoy CL; Giri BP
    Magn Reson Med; 1989 Mar; 9(3):402-10. PubMed ID: 2710006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of photodynamic therapy on RIF-1 tumor metabolism and blood flow examined by 31P and 2H NMR spectroscopy.
    Mattiello J; Evelhoch JL; Brown E; Schaap AP; Hetzel FW
    NMR Biomed; 1990 Apr; 3(2):64-70. PubMed ID: 2390455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of vasoactive drugs on tumour blood flow as determined by 2H nuclear magnetic resonance spectroscopy.
    Burney IA; Maxwell RJ; Field SB; McCoy CL; Griffiths JR
    Acta Oncol; 1995; 34(3):367-71. PubMed ID: 7779425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deuterium magnetic resonance in vivo: the measurement of blood flow and tissue perfusion.
    Ackerman JJ; Ewy CS; Kim SG; Shalwitz RA
    Ann N Y Acad Sci; 1987; 508():89-98. PubMed ID: 3439714
    [No Abstract]   [Full Text] [Related]  

  • 13. Concurrent quantification of tissue metabolism and blood flow via 2H/31P NMR in vivo. II. Validation of the deuterium NMR washout method for measuring organ perfusion.
    Neil JJ; Song SK; Ackerman JJ
    Magn Reson Med; 1992 May; 25(1):56-66. PubMed ID: 1593957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative determination of tumor blood flow and perfusion via deuterium nuclear magnetic resonance spectroscopy in mice.
    Kim SG; Ackerman JJ
    Cancer Res; 1988 Jun; 48(12):3449-53. PubMed ID: 2836055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local choroidal blood flow in the cat by laser Doppler flowmetry.
    Riva CE; Cranstoun SD; Mann RM; Barnes GE
    Invest Ophthalmol Vis Sci; 1994 Feb; 35(2):608-18. PubMed ID: 8113011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of hypovolemic hemoconcentration in dose-dependent flow decline observed in murine tumors after intraperitoneal administration of glucose or mannitol.
    Vaupel PW; Okunieff PG
    Cancer Res; 1988 Dec; 48(24 Pt 1):7102-6. PubMed ID: 3142682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deuterium nuclear magnetic resonance imaging of the developmental pattern of tumour blood flow.
    Burney IA; Maxwell RJ; Griffiths JR; Field SB
    EXS; 1992; 61():357-61. PubMed ID: 1377555
    [No Abstract]   [Full Text] [Related]  

  • 18. Reduced blood flow increases the in vivo ammonium ion concentration in the RIF-1 tumor.
    Constantinidis I; Gamcsik MP
    Int J Radiat Oncol Biol Phys; 1995 Aug; 33(1):143-9. PubMed ID: 7642412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous measurement of cerebral blood flow and energy metabolites in piglets using deuterium and phosphorus nuclear magnetic resonance.
    Corbett RJ; Laptook AR; Olivares E
    J Cereb Blood Flow Metab; 1991 Jan; 11(1):55-65. PubMed ID: 1984005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of relative regional tumor blood flow in mice by deuterium NMR imaging.
    Evelhoch JL; McDouall JB; Mattiello J; Simpson NE
    Magn Reson Med; 1992 Mar; 24(1):42-52. PubMed ID: 1532621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.