These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Age-associated decrease in contraction-induced activation of downstream targets of Akt/mTor signaling in skeletal muscle. Funai K; Parkington JD; Carambula S; Fielding RA Am J Physiol Regul Integr Comp Physiol; 2006 Apr; 290(4):R1080-6. PubMed ID: 16306159 [TBL] [Abstract][Full Text] [Related]
4. AMPK activation attenuates S6K1, 4E-BP1, and eEF2 signaling responses to high-frequency electrically stimulated skeletal muscle contractions. Thomson DM; Fick CA; Gordon SE J Appl Physiol (1985); 2008 Mar; 104(3):625-32. PubMed ID: 18187610 [TBL] [Abstract][Full Text] [Related]
5. Maximal lengthening contractions induce different signaling responses in the type I and type II fibers of human skeletal muscle. Tannerstedt J; Apró W; Blomstrand E J Appl Physiol (1985); 2009 Apr; 106(4):1412-8. PubMed ID: 19112158 [TBL] [Abstract][Full Text] [Related]
6. Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity-linked insulin resistance. Khamzina L; Veilleux A; Bergeron S; Marette A Endocrinology; 2005 Mar; 146(3):1473-81. PubMed ID: 15604215 [TBL] [Abstract][Full Text] [Related]
7. Insulin-like growth factor I-mediated skeletal muscle hypertrophy is characterized by increased mTOR-p70S6K signaling without increased Akt phosphorylation. Song YH; Godard M; Li Y; Richmond SR; Rosenthal N; Delafontaine P J Investig Med; 2005 Apr; 53(3):135-42. PubMed ID: 15921033 [TBL] [Abstract][Full Text] [Related]
8. Recovery of skeletal muscle mass after extensive injury: positive effects of increased contractile activity. Richard-Bulteau H; Serrurier B; Crassous B; Banzet S; Peinnequin A; Bigard X; Koulmann N Am J Physiol Cell Physiol; 2008 Feb; 294(2):C467-76. PubMed ID: 18077604 [TBL] [Abstract][Full Text] [Related]
9. Akt signaling in skeletal muscle: regulation by exercise and passive stretch. Sakamoto K; Aschenbach WG; Hirshman MF; Goodyear LJ Am J Physiol Endocrinol Metab; 2003 Nov; 285(5):E1081-8. PubMed ID: 12837666 [TBL] [Abstract][Full Text] [Related]
10. Selective activation of AMPK-PGC-1alpha or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation. Atherton PJ; Babraj J; Smith K; Singh J; Rennie MJ; Wackerhage H FASEB J; 2005 May; 19(7):786-8. PubMed ID: 15716393 [TBL] [Abstract][Full Text] [Related]
11. A protein kinase B-dependent and rapamycin-sensitive pathway controls skeletal muscle growth but not fiber type specification. Pallafacchina G; Calabria E; Serrano AL; Kalhovde JM; Schiaffino S Proc Natl Acad Sci U S A; 2002 Jul; 99(14):9213-8. PubMed ID: 12084817 [TBL] [Abstract][Full Text] [Related]
12. Immediate response of mammalian target of rapamycin (mTOR)-mediated signalling following acute resistance exercise in rat skeletal muscle. Bolster DR; Kubica N; Crozier SJ; Williamson DL; Farrell PA; Kimball SR; Jefferson LS J Physiol; 2003 Nov; 553(Pt 1):213-20. PubMed ID: 12937293 [TBL] [Abstract][Full Text] [Related]
13. Electrostimulation during hindlimb unloading modulates PI3K-AKT downstream targets without preventing soleus atrophy and restores slow phenotype through ERK. Dupont E; Cieniewski-Bernard C; Bastide B; Stevens L Am J Physiol Regul Integr Comp Physiol; 2011 Feb; 300(2):R408-17. PubMed ID: 21106911 [TBL] [Abstract][Full Text] [Related]
14. Thyroid hormone induces rapid activation of Akt/protein kinase B-mammalian target of rapamycin-p70S6K cascade through phosphatidylinositol 3-kinase in human fibroblasts. Cao X; Kambe F; Moeller LC; Refetoff S; Seo H Mol Endocrinol; 2005 Jan; 19(1):102-12. PubMed ID: 15388791 [TBL] [Abstract][Full Text] [Related]
16. Activation of the mammalian target of rapamycin pathway acutely inhibits insulin signaling to Akt and glucose transport in 3T3-L1 and human adipocytes. Tremblay F; Gagnon A; Veilleux A; Sorisky A; Marette A Endocrinology; 2005 Mar; 146(3):1328-37. PubMed ID: 15576463 [TBL] [Abstract][Full Text] [Related]
17. Differential regulation of MAP kinase, p70(S6K), and Akt by contraction and insulin in rat skeletal muscle. Sherwood DJ; Dufresne SD; Markuns JF; Cheatham B; Moller DE; Aronson D; Goodyear LJ Am J Physiol; 1999 May; 276(5):E870-8. PubMed ID: 10329981 [TBL] [Abstract][Full Text] [Related]
18. Lean and obese Zucker rats exhibit different patterns of p70s6 kinase regulation in the tibialis anterior muscle in response to high-force muscle contraction. Katta A; Karkala SK; Wu M; Meduru S; Desai DH; Rice KM; Blough ER Muscle Nerve; 2009 Apr; 39(4):503-11. PubMed ID: 19296503 [TBL] [Abstract][Full Text] [Related]
19. Altered regulation of contraction-induced Akt/mTOR/p70S6k pathway signaling in skeletal muscle of the obese Zucker rat. Katta A; Kakarla S; Wu M; Paturi S; Gadde MK; Arvapalli R; Kolli M; Rice KM; Blough ER Exp Diabetes Res; 2009; 2009():384683. PubMed ID: 20368999 [TBL] [Abstract][Full Text] [Related]
20. Endotoxin disrupts the leucine-signaling pathway involving phosphorylation of mTOR, 4E-BP1, and S6K1 in skeletal muscle. Lang CH; Frost RA J Cell Physiol; 2005 Apr; 203(1):144-55. PubMed ID: 15389631 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]