These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 12881407)
1. Fold recognition analysis of glycosyltransferase families: further members of structural superfamilies. Franco OL; Rigden DJ Glycobiology; 2003 Oct; 13(10):707-12. PubMed ID: 12881407 [TBL] [Abstract][Full Text] [Related]
2. Three-dimensional structures of the Mn and Mg dTDP complexes of the family GT-2 glycosyltransferase SpsA: a comparison with related NDP-sugar glycosyltransferases. Tarbouriech N; Charnock SJ; Davies GJ J Mol Biol; 2001 Dec; 314(4):655-61. PubMed ID: 11733986 [TBL] [Abstract][Full Text] [Related]
3. Three monophyletic superfamilies account for the majority of the known glycosyltransferases. Liu J; Mushegian A Protein Sci; 2003 Jul; 12(7):1418-31. PubMed ID: 12824488 [TBL] [Abstract][Full Text] [Related]
4. Structural evidence of a passive base-flipping mechanism for AGT, an unusual GT-B glycosyltransferase. Larivière L; Sommer N; Moréra S J Mol Biol; 2005 Sep; 352(1):139-50. PubMed ID: 16081100 [TBL] [Abstract][Full Text] [Related]
5. Structures and mechanisms of glycosyltransferases. Breton C; Snajdrová L; Jeanneau C; Koca J; Imberty A Glycobiology; 2006 Feb; 16(2):29R-37R. PubMed ID: 16037492 [TBL] [Abstract][Full Text] [Related]
6. The active site of the Escherichia coli glycogen synthase is similar to the active site of retaining GT-B glycosyltransferases. Yep A; Ballicora MA; Preiss J Biochem Biophys Res Commun; 2004 Apr; 316(3):960-6. PubMed ID: 15033495 [TBL] [Abstract][Full Text] [Related]
7. Chapter 12. The power of glycosyltransferases to generate bioactive natural compounds. Härle J; Bechthold A Methods Enzymol; 2009; 458():309-33. PubMed ID: 19374988 [TBL] [Abstract][Full Text] [Related]
8. Molecular modeling of glycosyltransferases. Imberty A; Wimmerová M; Koca J; Breton C Methods Mol Biol; 2006; 347():145-56. PubMed ID: 17072009 [TBL] [Abstract][Full Text] [Related]
9. Recent Progress in Structural Studies on the GT-C Superfamily of Protein Glycosyltransferases. Bohl H; Bai L; Li H Subcell Biochem; 2021; 96():259-271. PubMed ID: 33252732 [TBL] [Abstract][Full Text] [Related]
10. Identification of active site residues of the inverting glycosyltransferase Cgs required for the synthesis of cyclic beta-1,2-glucan, a Brucella abortus virulence factor. Ciocchini AE; Roset MS; Briones G; Iñón de Iannino N; Ugalde RA Glycobiology; 2006 Jul; 16(7):679-91. PubMed ID: 16603625 [TBL] [Abstract][Full Text] [Related]
11. Chitobiose phosphorylase from Vibrio proteolyticus, a member of glycosyl transferase family 36, has a clan GH-L-like (alpha/alpha)(6) barrel fold. Hidaka M; Honda Y; Kitaoka M; Nirasawa S; Hayashi K; Wakagi T; Shoun H; Fushinobu S Structure; 2004 Jun; 12(6):937-47. PubMed ID: 15274915 [TBL] [Abstract][Full Text] [Related]
12. Insights into the synthesis of lipopolysaccharide and antibiotics through the structures of two retaining glycosyltransferases from family GT4. Martinez-Fleites C; Proctor M; Roberts S; Bolam DN; Gilbert HJ; Davies GJ Chem Biol; 2006 Nov; 13(11):1143-52. PubMed ID: 17113996 [TBL] [Abstract][Full Text] [Related]
13. Deep evolutionary analysis reveals the design principles of fold A glycosyltransferases. Taujale R; Venkat A; Huang LC; Zhou Z; Yeung W; Rasheed KM; Li S; Edison AS; Moremen KW; Kannan N Elife; 2020 Apr; 9():. PubMed ID: 32234211 [TBL] [Abstract][Full Text] [Related]
14. Recognition of fold and sugar linkage for glycosyltransferases by multivariate sequence analysis. Rosén ML; Edman M; Sjöström M; Wieslander A J Biol Chem; 2004 Sep; 279(37):38683-92. PubMed ID: 15148316 [TBL] [Abstract][Full Text] [Related]
15. Combination of several bioinformatics approaches for the identification of new putative glycosyltransferases in Arabidopsis. Hansen SF; Bettler E; Wimmerová M; Imberty A; Lerouxel O; Breton C J Proteome Res; 2009 Feb; 8(2):743-53. PubMed ID: 19086785 [TBL] [Abstract][Full Text] [Related]
16. Superfamily active site templates. Meng EC; Polacco BJ; Babbitt PC Proteins; 2004 Jun; 55(4):962-76. PubMed ID: 15146493 [TBL] [Abstract][Full Text] [Related]
17. Current trends in the structure-activity relationships of sialyltransferases. Audry M; Jeanneau C; Imberty A; Harduin-Lepers A; Delannoy P; Breton C Glycobiology; 2011 Jun; 21(6):716-26. PubMed ID: 21098518 [TBL] [Abstract][Full Text] [Related]
18. Structure of the Escherichia coli heptosyltransferase WaaC: binary complexes with ADP and ADP-2-deoxy-2-fluoro heptose. Grizot S; Salem M; Vongsouthi V; Durand L; Moreau F; Dohi H; Vincent S; Escaich S; Ducruix A J Mol Biol; 2006 Oct; 363(2):383-94. PubMed ID: 16963083 [TBL] [Abstract][Full Text] [Related]
19. Structural, functional, and mutagenesis studies of UDP-glycosyltransferases. Malik V; Black GW Adv Protein Chem Struct Biol; 2012; 87():87-115. PubMed ID: 22607753 [TBL] [Abstract][Full Text] [Related]
20. Structural basis for red cell phenotypic changes in newly identified, naturally occurring subgroup mutants of the human blood group B glycosyltransferase. Hosseini-Maaf B; Letts JA; Persson M; Smart E; LePennec PY; Hustinx H; Zhao Z; Palcic MM; Evans SV; Chester MA; Olsson ML Transfusion; 2007 May; 47(5):864-75. PubMed ID: 17465952 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]