BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 12881516)

  • 21. Identification and characterization of novel Helicobacter pylori apo-fur-regulated target genes.
    Carpenter BM; Gilbreath JJ; Pich OQ; McKelvey AM; Maynard EL; Li ZZ; Merrell DS
    J Bacteriol; 2013 Dec; 195(24):5526-39. PubMed ID: 24097951
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A dominant-negative fur mutation in Bradyrhizobium japonicum.
    Benson HP; LeVier K; Guerinot ML
    J Bacteriol; 2004 Mar; 186(5):1409-14. PubMed ID: 14973020
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interaction between ArgR and AhrC controls regulation of arginine metabolism in Lactococcus lactis.
    Larsen R; Kok J; Kuipers OP
    J Biol Chem; 2005 May; 280(19):19319-30. PubMed ID: 15749710
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanistic insights into heme-mediated transcriptional regulation via a bacterial manganese-binding iron regulator, iron response regulator (Irr).
    Nam D; Matsumoto Y; Uchida T; O'Brian MR; Ishimori K
    J Biol Chem; 2020 Aug; 295(32):11316-11325. PubMed ID: 32554810
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sinorhizobium meliloti fur-like (Mur) protein binds a fur box-like sequence present in the mntA promoter in a manganese-responsive manner.
    Platero R; de Lorenzo V; Garat B; Fabiano E
    Appl Environ Microbiol; 2007 Aug; 73(15):4832-8. PubMed ID: 17557847
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Fur repressor controls transcription of iron-activated and -repressed genes in Helicobacter pylori.
    Delany I; Spohn G; Rappuoli R; Scarlato V
    Mol Microbiol; 2001 Dec; 42(5):1297-309. PubMed ID: 11886560
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Escherichia coli ferric uptake regulator (Fur) can mediate regulation of a pseudomonad iron-regulated promoter.
    O'Sullivan DJ; Dowling DN; deLorenzo V; O'Gara F
    FEMS Microbiol Lett; 1994 Apr; 117(3):327-32. PubMed ID: 8200508
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Ferric Uptake Regulator Represses Type VI Secretion System Function by Binding Directly to the
    Wang S; Yang D; Wu X; Yi Z; Wang Y; Xin S; Wang D; Tian M; Li T; Qi J; Ding C; Yu S
    Infect Immun; 2019 Oct; 87(10):. PubMed ID: 31383745
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular characterization of the ferric-uptake regulator, fur, from Staphylococcus aureus.
    Xiong A; Singh VK; Cabrera G; Jayaswal RK
    Microbiology (Reading); 2000 Mar; 146 ( Pt 3)():659-668. PubMed ID: 10746769
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The manganese-responsive repressor Mur of Rhizobium leguminosarum is a member of the Fur-superfamily that recognizes an unusual operator sequence.
    Díaz-Mireles E; Wexler M; Todd JD; Bellini D; Johnston AWB; Sawers RG
    Microbiology (Reading); 2005 Dec; 151(Pt 12):4071-4078. PubMed ID: 16339952
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of divergent transcription from the iron-responsive fepB-entC promoter-operator regions in Escherichia coli.
    Brickman TJ; Ozenberger BA; McIntosh MA
    J Mol Biol; 1990 Apr; 212(4):669-82. PubMed ID: 2139473
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of the DNA-binding site in the ferric uptake regulator protein from Escherichia coli by UV crosslinking and mass spectrometry.
    Tiss A; Barre O; Michaud-Soret I; Forest E
    FEBS Lett; 2005 Oct; 579(25):5454-60. PubMed ID: 16212958
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The ferric uptake regulation (Fur) repressor is a zinc metalloprotein.
    Althaus EW; Outten CE; Olson KE; Cao H; O'Halloran TV
    Biochemistry; 1999 May; 38(20):6559-69. PubMed ID: 10350474
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cloning, sequence, and footprint analysis of two promoter/operators from Corynebacterium diphtheriae that are regulated by the diphtheria toxin repressor (DtxR) and iron.
    Schmitt MP; Holmes RK
    J Bacteriol; 1994 Feb; 176(4):1141-9. PubMed ID: 8106325
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Positive regulation of fur gene expression via direct interaction of fur in a pathogenic bacterium, Vibrio vulnificus.
    Lee HJ; Bang SH; Lee KH; Park SJ
    J Bacteriol; 2007 Apr; 189(7):2629-36. PubMed ID: 17237166
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metalloregulation in vitro of the aerobactin promoter of Escherichia coli by the Fur (ferric uptake regulation) protein.
    Escolar L; de Lorenzo V; Pérez-Martín J
    Mol Microbiol; 1997 Nov; 26(4):799-808. PubMed ID: 9427409
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome-Wide Analysis of ResD, NsrR, and Fur Binding in Bacillus subtilis during Anaerobic Fermentative Growth by
    Chumsakul O; Anantsri DP; Quirke T; Oshima T; Nakamura K; Ishikawa S; Nakano MM
    J Bacteriol; 2017 Jul; 199(13):. PubMed ID: 28439033
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaction of the atypical prokaryotic transcription activator FlhD2C2 with early promoters of the flagellar gene hierarchy.
    Claret L; Hughes C
    J Mol Biol; 2002 Aug; 321(2):185-99. PubMed ID: 12144778
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of a Fur-dependent and tightly regulated expression system in Escherichia coli for toxic protein synthesis.
    Guan L; Liu Q; Li C; Zhang Y
    BMC Biotechnol; 2013 Mar; 13():25. PubMed ID: 23510048
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mode of action of AraR, the key regulator of L-arabinose metabolism in Bacillus subtilis.
    Mota LJ; Tavares P; Sá-Nogueira I
    Mol Microbiol; 1999 Aug; 33(3):476-89. PubMed ID: 10417639
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.