These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 12881864)

  • 1. [Effects of pethidine on cardiac electrophysiological properties].
    Zhang X; Wang LL; Ding YM; Lu Y; Xia Q
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2003 Jun; 32(3):207-11. PubMed ID: 12881864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophysiological effects of protopine in cardiac myocytes: inhibition of multiple cation channel currents.
    Song LS; Ren GJ; Chen ZL; Chen ZH; Zhou ZN; Cheng H
    Br J Pharmacol; 2000 Mar; 129(5):893-900. PubMed ID: 10696087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Negative inotropic effect of meperidine in rat ventricular muscle and the underlying mechanism].
    Zhang X; Cao CM; Wang LL; Ding YM; Xia Q
    Sheng Li Xue Bao; 2003 Apr; 55(2):197-200. PubMed ID: 12715111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrophysiological properties of neonatal mouse cardiac myocytes in primary culture.
    Nuss HB; Marban E
    J Physiol; 1994 Sep; 479 ( Pt 2)(Pt 2):265-79. PubMed ID: 7799226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of the diuretic agent indapamide on Na+, transient outward, and delayed rectifier currents in canine atrial myocytes.
    Lu Y; Yue L; Wang Z; Nattel S
    Circ Res; 1998 Jul; 83(2):158-66. PubMed ID: 9686755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophysiological mechanisms for the antiarrhythmic activities of naloxone on cardiac tissues.
    Hung CF; Wu MH; Tsai CH; Chu SH; Chi JF; Su MJ
    Life Sci; 1998; 63(14):1205-19. PubMed ID: 9771910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrophysiological mechanisms for antiarrhythmic efficacy and positive inotropy of liriodenine, a natural aporphine alkaloid from Fissistigma glaucescens.
    Chang GJ; Wu MH; Wu YC; Su MJ
    Br J Pharmacol; 1996 Aug; 118(7):1571-83. PubMed ID: 8842417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical and electrophysiological effects of a hydroxyphenyl-substituted tetrahydroisoquinoline, SL-1, on isolated rat cardiac tissues.
    Chang GJ; SU MJ; Lee PH; Lee SS; Liu KC
    Can J Physiol Pharmacol; 1995 Nov; 73(11):1651-60. PubMed ID: 8789420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophysiological Effects of the Transient Receptor Potential Melastatin 4 Channel Inhibitor (4-Chloro-2-(2-chlorophenoxy)acetamido) Benzoic Acid (CBA) in Canine Left Ventricular Cardiomyocytes.
    Dienes C; Hézső T; Kiss DZ; Baranyai D; Kovács ZM; Szabó L; Magyar J; Bányász T; Nánási PP; Horváth B; Gönczi M; Szentandrássy N
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of 17beta-estradiol on action potentials and ionic currents in male rat ventricular myocytes.
    Berger F; Borchard U; Hafner D; Pütz I; Weis TM
    Naunyn Schmiedebergs Arch Pharmacol; 1997 Dec; 356(6):788-96. PubMed ID: 9453465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionic mechanisms mediating the differential effects of methohexital and thiopental on action potential duration in guinea pig and rabbit isolated ventricular myocytes.
    Martynyuk AE; Morey TE; Raatikainen MJ; Seubert CN; Dennis DM
    Anesthesiology; 1999 Jan; 90(1):156-64. PubMed ID: 9915324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionic mechanisms for the antiarrhythmic action of cinnamophilin in rat heart.
    Su MJ; Chen WP; Lo TY; Wu TS
    J Biomed Sci; 1999; 6(6):376-86. PubMed ID: 10545773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of ionic currents underlying changes in action potential waveforms in rat spinal motoneurons.
    Gao BX; Ziskind-Conhaim L
    J Neurophysiol; 1998 Dec; 80(6):3047-61. PubMed ID: 9862905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prolonged action potential duration of guinea-pig heart muscle after pethidine.
    Helgesen KG; Refsum H
    Pharmacol Toxicol; 1990 Mar; 66(3):217-20. PubMed ID: 2333277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The electrophysiological characteristics of hypertrophied ventricular myocytes from the spontaneously hypertensive rat.
    Brooksby P; Levi AJ; Jones JV
    J Hypertens; 1993 Jun; 11(6):611-22. PubMed ID: 8397240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of action potentials and their underlying outward currents in rat taste receptor cells.
    Chen Y; Sun XD; Herness S
    J Neurophysiol; 1996 Feb; 75(2):820-31. PubMed ID: 8714655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of single cell voltage clamp on the understanding of the cardiac ventricular action potential.
    Varró A; Papp JG
    Cardioscience; 1992 Sep; 3(3):131-44. PubMed ID: 1384746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophysiological effects of fluoxetine in mammalian cardiac tissues.
    Pacher P; Magyar J; Szigligeti P; Bányász T; Pankucsi C; Korom Z; Ungvári Z; Kecskeméti V; Nánási PP
    Naunyn Schmiedebergs Arch Pharmacol; 2000 Jan; 361(1):67-73. PubMed ID: 10651149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple cellular electrophysiological effects of a novel antiarrhythmic furoquinoline derivative HA-7 [N-benzyl-7-methoxy-2,3,4,9-tetrahydrofuro[2,3-b]quinoline-3,4-dione] in guinea pig cardiac preparations.
    Chang GJ; Su MJ; Kuo SC; Lin TP; Lee YS
    J Pharmacol Exp Ther; 2006 Jan; 316(1):380-91. PubMed ID: 16174797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tonic blocking action of meperidine on Na+ and K+ channels in amphibian peripheral nerves.
    Bräu ME; Koch ED; Vogel W; Hempelmann G
    Anesthesiology; 2000 Jan; 92(1):147-55. PubMed ID: 10638911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.