These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 12882014)

  • 1. Induced reactive oxygen species improve enzyme production from Aspergillus niger cultivation.
    Sahoo S; Rao KK; Suraishkumar GK
    Biotechnol Lett; 2003 May; 25(10):821-5. PubMed ID: 12882014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous production of catalase, glucose oxidase and gluconic acid by Aspergillus niger mutant.
    Fiedurek J; Gromada A; Pielecki J
    Acta Microbiol Pol; 1998; 47(4):355-64. PubMed ID: 10333558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of catalase and glucose oxidase by Aspergillus niger using unconventional oxygenation of culture.
    Fiedurek J; Gromada A
    J Appl Microbiol; 2000 Jul; 89(1):85-9. PubMed ID: 10945783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement in enzyme productivities from mold cultivations using the liquid-phase oxygen supply strategy.
    Rawool SB; Sahoo S; Rao KK; Sureshkumar GK
    Biotechnol Prog; 2001; 17(5):832-7. PubMed ID: 11587571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of glucose oxidase, catalase, and lactonase in Aspergillus niger.
    Witteveen FB; van de Vondervoort PJ; van den Broeck HC; van Engelenburg AC; de Graaff LH; Hillebrand MH; Schaap PJ; Visser J
    Curr Genet; 1993 Nov; 24(5):408-16. PubMed ID: 8299156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Introduction to bioreactors of shake-flask inocula leads to development of oxidative stress in Aspergillus niger.
    O'Donnell A; Bai Y; Bai Z; McNeil B; Harvey LM
    Biotechnol Lett; 2007 Jun; 29(6):895-900. PubMed ID: 17351717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of hydrogen peroxide and superoxide degrading pathways of Aspergillus niger catalase: a steady-state analysis.
    Lardinois OM; Rouxhet PG
    Free Radic Res; 1994 Jan; 20(1):29-50. PubMed ID: 8012520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of metal ions on simultaneous production of glucose oxidase and catalase by Aspergillus niger.
    Liu JZ; Huang YY; Liu J; Weng LP; Ji LN
    Lett Appl Microbiol; 2001 Jan; 32(1):16-9. PubMed ID: 11169035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of Aspergillus niger Virulence in Apple Fruits by Deletion of the Catalase Gene cpeB.
    Zhang MK; Tang J; Huang ZQ; Hu KD; Li YH; Han Z; Chen XY; Hu LY; Yao GF; Zhang H
    J Agric Food Chem; 2018 May; 66(21):5401-5409. PubMed ID: 29745230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Condition stabilization for Aspergillus niger FCBP-198 and its hyperactive mutants to yield high titres of alpha-amylase.
    Shafique S; Bajwa R; Shafique S
    Mikrobiologiia; 2010; 79(3):301-6. PubMed ID: 20734811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of glucose oxidase and catalase by Aspergillus niger in resting cell culture system.
    Liu JZ; Yang HY; Weng LP; Ji LN
    Lett Appl Microbiol; 1999 Nov; 29(5):337-41. PubMed ID: 10701992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of intercellular ROS signaling of human tumor cells.
    Bechtel W; Bauer G
    Anticancer Res; 2009 Nov; 29(11):4559-70. PubMed ID: 20032404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological responses of chemostat cultures of Aspergillus niger (B1-D) to simulated and actual oxidative stress.
    Bai Z; Harvey LM; McNeil B
    Biotechnol Bioeng; 2003 Jun; 82(6):691-701. PubMed ID: 12673769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat-shock-induced oxidative stress and antioxidant response in Aspergillus niger 26.
    Abrashev RI; Pashova SB; Stefanova LN; Vassilev SV; Dolashka-Angelova PA; Angelova MB
    Can J Microbiol; 2008 Dec; 54(12):977-83. PubMed ID: 19096452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of tannase production by Aspergillus niger in solid-state packed-bed bioreactor.
    Rodríguez-Durán LV; Contreras-Esquivel JC; Rodríguez R; Prado-Barragán LA; Aguilar CN
    J Microbiol Biotechnol; 2011 Sep; 21(9):960-7. PubMed ID: 21952373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "Oxidative stress" response in submerged cultures of a recombinant Aspergillus niger (B1-D).
    Kreiner M; McNeil B; Harvey LM
    Biotechnol Bioeng; 2000 Dec; 70(6):662-9. PubMed ID: 11064335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selection of biochemical mutants of Aspergillus niger with enhanced catalase production.
    Fiedurek J; Gromada A
    Appl Microbiol Biotechnol; 1997 Mar; 47(3):313-6. PubMed ID: 9114519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of glucose oxidase production by Aspergillus niger using genetic- and process-engineering techniques.
    Hellmuth K; Pluschkell S; Jung JK; Ruttkowski E; Rinas U
    Appl Microbiol Biotechnol; 1995 Nov; 43(6):978-84. PubMed ID: 8590664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Construction and application of black-box model for glucoamylase production by Aspergillus niger].
    Li L; Lu H; Xia J; Chu J; Zhuang Y; Zhang S
    Sheng Wu Gong Cheng Xue Bao; 2015 Jul; 31(7):1089-98. PubMed ID: 26647584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of tannase by Aspergillus niger Aa-20 in submerged and solid-state fermentation: influence of glucose and tannic acid.
    Aguilar CN; Augur C; Favela-Torres E; Viniegra-González G
    J Ind Microbiol Biotechnol; 2001 May; 26(5):296-302. PubMed ID: 11494106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.