These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 12882223)

  • 1. Modelling the effect of diffuse light on canopy photosynthesis in controlled environments.
    Cavazzoni J; Volk T; Tubiello F; Monje O
    Acta Hortic; 2002; 593():39-45. PubMed ID: 12882223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gas exchange characteristics of wheat stands grown in a closed, controlled environment.
    Wheeler RM; Corey KA; Sager JC; Knott WM
    Crop Sci; 1993; 33(1):161-8. PubMed ID: 11538198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffuse light and wheat radiation-use efficiency in a controlled environment.
    Tubiello F; Volk T; Bugbee B
    Life Support Biosph Sci; 1997; 4(1-2):77-85. PubMed ID: 11540456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptation of SUBSTOR for controlled-environment potato production with elevated carbon dioxide.
    Fleisher DH; Cavazzoni J; Giacomelli GA; Ting KC
    Trans ASAE; 2003; 46(2):531-8. PubMed ID: 14552353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth and gas exchange by lettuce stands in a closed, controlled environment.
    Wheeler RM; Mackowiak CL; Sager JC; Yorio NC; Knott WM; Berry WL
    J Am Soc Hortic Sci; 1994 May; 119(3):610-5. PubMed ID: 11538197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal nitrogen distribution within a leaf canopy under direct and diffuse light.
    Hikosaka K
    Plant Cell Environ; 2014 Sep; 37(9):2077-85. PubMed ID: 24506525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A modified CROPGRO model for simulating soybean growth in controlled environments.
    Cavazzoni J; Volk T; Stutte G
    Life Support Biosph Sci; 1997; 4(1-2):43-8. PubMed ID: 11540451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wheat production in the controlled environments of space.
    Bugbee B; Salisbury FB
    Utah Sci; 1985; 46(4):145-51. PubMed ID: 11540895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Canopy photosynthesis of six major arable crops is enhanced under diffuse light due to canopy architecture.
    Emmel C; D'Odorico P; Revill A; Hörtnagl L; Ammann C; Buchmann N; Eugster W
    Glob Chang Biol; 2020 Sep; 26(9):5164-5177. PubMed ID: 32557891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptation to high CO2 concentration in an optimal environment: radiation capture, canopy quantum yield and carbon use efficiency.
    Monje O; Bugbee B
    Plant Cell Environ; 1998; 21():315-24. PubMed ID: 11543216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling canopy photosynthesis in response to environmental conditions.
    Johnson IR
    Adv Space Res; 1996; 18(1-2):163-6. PubMed ID: 11538957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new paradigm in leaf-level photosynthesis: direct and diffuse lights are not equal.
    Brodersen CR; Vogelmann TC; Williams WE; Gorton HL
    Plant Cell Environ; 2008 Jan; 31(1):159-64. PubMed ID: 18028265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing photosynthesis and transpiration of plant communities in controlled environments.
    Monje O; Bugbee B
    Acta Hortic; 1996 Dec; 440():123-8. PubMed ID: 11541566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determining the potential productivity of food crops in controlled environments.
    Bugbee B
    Adv Space Res; 1992; 12(5):85-95. PubMed ID: 11537083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of kaolin application on light absorption and distribution, radiation use efficiency and photosynthesis of almond and walnut canopies.
    Rosati A; Metcalf SG; Buchner RP; Fulton AE; Lampinen BD
    Ann Bot; 2007 Feb; 99(2):255-63. PubMed ID: 17138580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the spatial distribution of light interception and photosynthesis of canopies by means of a functional-structural plant model.
    Sarlikioti V; de Visser PH; Marcelis LF
    Ann Bot; 2011 Apr; 107(5):875-83. PubMed ID: 21355008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A meta-analysis of leaf nitrogen distribution within plant canopies.
    Hikosaka K; Anten NP; Borjigidai A; Kamiyama C; Sakai H; Hasegawa T; Oikawa S; Iio A; Watanabe M; Koike T; Nishina K; Ito A
    Ann Bot; 2016 Aug; 118(2):239-47. PubMed ID: 27296134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light intensity and production parameters of phytocenoses cultivated on soil-like substrate under controlled [correction of controled] environment conditions.
    Tikhomirov AA; Ushakova SA; Gribovskaya IA; Tirranen LS; Manukovsky NS; Zolotukhin IG; Karnachuk RA; Gros JB; Lasseur Ch
    Adv Space Res; 2003; 31(7):1775-80. PubMed ID: 14503517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arctic canopy photosynthetic efficiency enhanced under diffuse light, linked to a reduction in the fraction of the canopy in deep shade.
    Williams M; Rastetter EB; Van der Pol L; Shaver GR
    New Phytol; 2014 Jun; 202(4):1267-1276. PubMed ID: 24593320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A data base of crop nutrient use, water use, and carbon dioxide exchange in a 2O square meter growth chamber: I. Wheat as a case study.
    Wheeler RM; Berry WL; Mackowiak C; Corey KA; Sager JC; Heeb MM; Knott WM
    J Plant Nutr; 1993; 16(10):1881-915. PubMed ID: 11538007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.