These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 12882230)

  • 1. What are the roles of the many different types of potassium channel expressed in cerebellar granule cells?
    Mathie A; Clarke CE; Ranatunga KM; Veale EL
    Cerebellum; 2003; 2(1):11-25. PubMed ID: 12882230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of native rat cerebellar granule cell currents due to background K channel KCNK5 (TASK-2).
    Cotten JF; Zou HL; Liu C; Au JD; Yost CS
    Brain Res Mol Brain Res; 2004 Sep; 128(2):112-20. PubMed ID: 15363886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modifying the subunit composition of TASK channels alters the modulation of a leak conductance in cerebellar granule neurons.
    Aller MI; Veale EL; Linden AM; Sandu C; Schwaninger M; Evans LJ; Korpi ER; Mathie A; Wisden W; Brickley SG
    J Neurosci; 2005 Dec; 25(49):11455-67. PubMed ID: 16339039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of mRNA for voltage-dependent and inward-rectifying K channels in GH3/B6 cells and rat pituitary.
    Wulfsen I; Hauber HP; Schiemann D; Bauer CK; Schwarz JR
    J Neuroendocrinol; 2000 Mar; 12(3):263-72. PubMed ID: 10718922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of four types of background potassium channels in rat cerebellar granule neurons.
    Han J; Truell J; Gnatenco C; Kim D
    J Physiol; 2002 Jul; 542(Pt 2):431-44. PubMed ID: 12122143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A functional role for the two-pore domain potassium channel TASK-1 in cerebellar granule neurons.
    Millar JA; Barratt L; Southan AP; Page KM; Fyffe RE; Robertson B; Mathie A
    Proc Natl Acad Sci U S A; 2000 Mar; 97(7):3614-8. PubMed ID: 10725353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voltage-activated potassium channels in mammalian neurons and their block by novel pharmacological agents.
    Mathie A; Wooltorton JR; Watkins CS
    Gen Pharmacol; 1998 Jan; 30(1):13-24. PubMed ID: 9457476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential expression of two-pore domain potassium channels in rat cerebellar granule neurons.
    Burgos P; Zúñiga R; Domínguez P; Delgado-López F; Plant LD; Zúñiga L
    Biochem Biophys Res Commun; 2014 Oct; 453(4):754-60. PubMed ID: 25305496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A-type K+ current mediated by the Kv4 channel regulates the generation of action potential in developing cerebellar granule cells.
    Shibata R; Nakahira K; Shibasaki K; Wakazono Y; Imoto K; Ikenaka K
    J Neurosci; 2000 Jun; 20(11):4145-55. PubMed ID: 10818150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and function of cardiac potassium channels.
    Snyders DJ
    Cardiovasc Res; 1999 May; 42(2):377-90. PubMed ID: 10533574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myocardial potassium channels: electrophysiological and molecular diversity.
    Barry DM; Nerbonne JM
    Annu Rev Physiol; 1996; 58():363-94. PubMed ID: 8815800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Neuronal background two-P-domain potassium channels: molecular and functional aspects].
    Girard C; Lesage F
    Med Sci (Paris); 2004 May; 20(5):544-9. PubMed ID: 15190472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subunit interactions in the assembly of neuronal Kir3.0 inwardly rectifying K+ channels.
    Wischmeyer E; Döring F; Wischmeyer E; Spauschus A; Thomzig A; Veh R; Karschin A
    Mol Cell Neurosci; 1997; 9(3):194-206. PubMed ID: 9245502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional expression of TASK-1/TASK-3 heteromers in cerebellar granule cells.
    Kang D; Han J; Talley EM; Bayliss DA; Kim D
    J Physiol; 2004 Jan; 554(Pt 1):64-77. PubMed ID: 14678492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular and functional diversity of K+ channels.
    Christie MJ
    Clin Exp Pharmacol Physiol; 1995 Dec; 22(12):944-51. PubMed ID: 8846516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rat GnRH neurons exhibit large conductance voltage- and Ca2+-Activated K+ (BK) currents and express BK channel mRNAs.
    Hiraizumi Y; Nishimura I; Ishii H; Tanaka N; Takeshita T; Sakuma Y; Kato M
    J Physiol Sci; 2008 Feb; 58(1):21-9. PubMed ID: 18177544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional effects of auxiliary beta4-subunit on rat large-conductance Ca(2+)-activated K(+) channel.
    Ha TS; Heo MS; Park CS
    Biophys J; 2004 May; 86(5):2871-82. PubMed ID: 15111404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potassium channel currents in rat mesenchymal stem cells and their possible roles in cell proliferation.
    Wang SP; Wang JA; Luo RH; Cui WY; Wang H
    Clin Exp Pharmacol Physiol; 2008 Sep; 35(9):1077-84. PubMed ID: 18505444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of ionic currents in human mesenchymal stem cells from bone marrow.
    Li GR; Sun H; Deng X; Lau CP
    Stem Cells; 2005 Mar; 23(3):371-82. PubMed ID: 15749932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concatemers of brain Kv1 channel alpha subunits that give similar K+ currents yield pharmacologically distinguishable heteromers.
    Sokolov MV; Shamotienko O; Dhochartaigh SN; Sack JT; Dolly JO
    Neuropharmacology; 2007 Aug; 53(2):272-82. PubMed ID: 17637465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.