These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 12882277)

  • 41. Cotton Stalk Pretreatment Using Daedalea flavida, Phlebia radiata, and Flavodon flavus: Lignin Degradation, Cellulose Recovery, and Enzymatic Saccharification.
    Meehnian H; Jana AK
    Appl Biochem Biotechnol; 2017 Apr; 181(4):1465-1484. PubMed ID: 27812899
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Production of ligninolytic enzymes for dye decolorization by cocultivation of white-rot fungi Pleurotus ostreatus and phanerochaete chrysosporium under solid-state fermentation.
    Verma P; Madamwar D
    Appl Biochem Biotechnol; 2002; 102-103(1-6):109-18. PubMed ID: 12396115
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Utilization of horticultural waste for laccase production by Trametes versicolor under solid-state fermentation.
    Xin F; Geng A
    Appl Biochem Biotechnol; 2011 Jan; 163(2):235-46. PubMed ID: 20640894
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optimization of a culture medium for ligninolytic enzyme production and synthetic dye decolorization using response surface methodology.
    Trupkin S; Levin L; Forchiassin F; Viale A
    J Ind Microbiol Biotechnol; 2003 Dec; 30(12):682-90. PubMed ID: 14648345
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Laccase production by some Phlebia species.
    Arora DS; Rampal P
    J Basic Microbiol; 2002; 42(5):295-301. PubMed ID: 12362400
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Application of lignocellulolytic enzymes produced under solid state cultivation conditions.
    Deswal D; Sharma A; Gupta R; Kuhad RC
    Bioresour Technol; 2012 Jul; 115():249-54. PubMed ID: 22067437
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Electrochemical decolourisation of structurally different dyes.
    Sanromán MA; Pazos M; Ricart MT; Cameselle C
    Chemosphere; 2004 Oct; 57(3):233-9. PubMed ID: 15312740
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Production of laccase and manganese peroxidase by Fomes sclerodermeus grown on wheat bran.
    Papinutti VL; Diorio LA; Forchiassin F
    J Ind Microbiol Biotechnol; 2003 Mar; 30(3):157-60. PubMed ID: 12715252
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Melanoidin-containing wastewaters induce selective laccase gene expression in the white-rot fungus Trametes sp. I-62.
    González T; Terrón MC; Yagüe S; Junca H; Carbajo JM; Zapico EJ; Silva R; Arana-Cuenca A; Téllez A; González AE
    Res Microbiol; 2008 Mar; 159(2):103-9. PubMed ID: 18248962
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Strategies for enhancing laccase yield from Streptomyces psammoticus and its role in mediator-based decolorization of azo dyes.
    Niladevi KN; Sheejadevi PS; Prema P
    Appl Biochem Biotechnol; 2008 Oct; 151(1):9-19. PubMed ID: 18473186
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An extracellular laccase with potent dye decolorizing ability from white rot fungus Trametes sp. LAC-01.
    Ling ZR; Wang SS; Zhu MJ; Ning YJ; Wang SN; Li B; Yang AZ; Zhang GQ; Zhao XM
    Int J Biol Macromol; 2015 Nov; 81():785-93. PubMed ID: 26361865
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhanced decolourisation ability of laccase towards various synthetic dyes by an electrocatalysis technology.
    Cameselle C; Pazos M; Lorenzo M; Sanromán MA
    Biotechnol Lett; 2003 Apr; 25(8):603-6. PubMed ID: 12882152
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fungal Pretreatment of Sweet Sorghum Bagasse with Combined CuSO
    Mishra V; Jana AK
    Appl Biochem Biotechnol; 2017 Sep; 183(1):200-217. PubMed ID: 28247310
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Purification and Characterization of a Thermostable Laccase from Trametes trogii and Its Ability in Modification of Kraft Lignin.
    Ai MQ; Wang FF; Huang F
    J Microbiol Biotechnol; 2015 Aug; 25(8):1361-70. PubMed ID: 25876603
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enzymatic coating of lignocellulosic surfaces with polyphenols.
    Schroeder M; Aichernig N; Guebitz GM; Kokol V
    Biotechnol J; 2007 Mar; 2(3):334-41. PubMed ID: 17260331
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The role of the ubiquitin-proteasome system in the response of the ligninolytic fungus Trametes versicolor to nitrogen deprivation.
    Staszczak M
    Fungal Genet Biol; 2008 Mar; 45(3):328-37. PubMed ID: 18273947
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Degradation of poplar wood by Fomes sclerodermeus: production of ligninolytic enzymes in sawdust of poplar and cedar].
    Papinutti VL; Diorio LA; Forchiassin F
    Rev Iberoam Micol; 2003 Mar; 20(1):16-20. PubMed ID: 12825976
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ceriporiopsis subvermispora used in delignification of sugarcane bagasse prior to soda/anthraquinone pulping.
    Costa SM; Gonçalves AR; Esposito E
    Appl Biochem Biotechnol; 2005; 121-124():695-706. PubMed ID: 15920273
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evaluation of Lignin-Modifying Enzyme Activity of Trametes spp. (Agaricomycetes) Isolated from Georgian Forests with an Emphasis on T. multicolor Biosynthetic Potential.
    Kachlishvili E; Asatiani MD; Kobakhidze A; Elisashvili V
    Int J Med Mushrooms; 2018; 20(10):971-987. PubMed ID: 30806269
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Specificities of a chemically modified laccase from Trametes hirsuta on soluble and cellulose-bound substrates.
    Schroeder M; Heumann S; Silva CJ; Cavaco-Paulo A; Guebitz GM
    Biotechnol Lett; 2006 May; 28(10):741-7. PubMed ID: 16791729
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.