These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 12882331)

  • 1. Neural control of aging skeletal muscle.
    Delbono O
    Aging Cell; 2003 Feb; 2(1):21-9. PubMed ID: 12882331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Motor neurone targeting of IGF-1 prevents specific force decline in ageing mouse muscle.
    Payne AM; Zheng Z; Messi ML; Milligan CE; González E; Delbono O
    J Physiol; 2006 Jan; 570(Pt 2):283-94. PubMed ID: 16293644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motor neuron targeting of IGF-1 attenuates age-related external Ca2+-dependent skeletal muscle contraction in senescent mice.
    Payne AM; Messi ML; Zheng Z; Delbono O
    Exp Gerontol; 2007 Apr; 42(4):309-19. PubMed ID: 17174053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression and regulation of excitation-contraction coupling proteins in aging skeletal muscle.
    Delbono O
    Curr Aging Sci; 2011 Dec; 4(3):248-59. PubMed ID: 21529320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of excitation contraction coupling by insulin-like growth factor-1 in aging skeletal muscle.
    Delbono O
    J Nutr Health Aging; 2000; 4(3):162-4. PubMed ID: 10936903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of sustained overexpression of central nervous system IGF-I in the age-dependent decline of mouse excitation-contraction coupling.
    Moreno RJ; Messi ML; Zheng Z; Wang ZM; Ye P; D'Ercole JA; Delbono O
    J Membr Biol; 2006; 212(3):147-61. PubMed ID: 17334835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Target-derived trophic effect on skeletal muscle innervation in senescent mice.
    Messi ML; Delbono O
    J Neurosci; 2003 Feb; 23(4):1351-9. PubMed ID: 12598623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross-talk between motor neurons and myotubes via endogenously secreted neural and muscular growth factors.
    Saini J; Faroni A; Reid AJ; Mouly V; Butler-Browne G; Lightfoot AP; McPhee JS; Degens H; Al-Shanti N
    Physiol Rep; 2021 Apr; 9(8):e14791. PubMed ID: 33931983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motor unit and neuromuscular junction remodeling with aging.
    Deschenes MR
    Curr Aging Sci; 2011 Dec; 4(3):209-20. PubMed ID: 21529328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motor unit changes in normal aging: a brief review.
    Tudoraşcu I; Sfredel V; Riza AL; Dănciulescu Miulescu R; Ianoşi SL; Dănoiu S
    Rom J Morphol Embryol; 2014; 55(4):1295-301. PubMed ID: 25611259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Some reminiscences on studies of age-dependent and activity-dependent degeneration of sensory and motor endings in mammalian skeletal muscle.
    Ribchester RR
    J Anat; 2015 Aug; 227(2):231-6. PubMed ID: 26179026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuromuscular junction disassembly and muscle fatigue in mice lacking neurotrophin-4.
    Belluardo N; Westerblad H; Mudó G; Casabona A; Bruton J; Caniglia G; Pastoris O; Grassi F; Ibáñez CF
    Mol Cell Neurosci; 2001 Jul; 18(1):56-67. PubMed ID: 11461153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The "all-or-none" law in skeletal muscle and nerve fibres.
    Pareti G
    Arch Ital Biol; 2007 Jan; 145(1):39-54. PubMed ID: 17274183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical stimulation promotes motor nerve regeneration selectivity regardless of end-organ connection.
    Wang WJ; Zhu H; Li F; Wan LD; Li HC; Ding WL
    J Neurotrauma; 2009 Apr; 26(4):641-9. PubMed ID: 19271967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-related Changes in Motor Function (I). Mechanical and Neuromuscular Factors.
    Wu R; De Vito G; Delahunt E; Ditroilo M
    Int J Sports Med; 2020 Oct; 41(11):709-719. PubMed ID: 32365388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional over-load saves motor units in the SOD1-G93A transgenic mouse model of amyotrophic lateral sclerosis.
    Gordon T; Tyreman N; Li S; Putman CT; Hegedus J
    Neurobiol Dis; 2010 Feb; 37(2):412-22. PubMed ID: 19879358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human neural progenitors differentiate into astrocytes and protect motor neurons in aging rats.
    Das MM; Avalos P; Suezaki P; Godoy M; Garcia L; Chang CD; Vit JP; Shelley B; Gowing G; Svendsen CN
    Exp Neurol; 2016 Jun; 280():41-9. PubMed ID: 27032721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of insulin-like growth factor regulation of programmed cell death of developing avian motoneurons.
    D'Costa AP; Prevette DM; Houenou LJ; Wang S; Zackenfels K; Rohrer H; Zapf J; Caroni P; Oppenheim RW
    J Neurobiol; 1998 Sep; 36(3):379-94. PubMed ID: 9733073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term delivery of FGF-6 changes the fiber type and fatigability of muscle reinnervated from embryonic neurons transplanted into adult rat peripheral nerve.
    Grumbles RM; Casella GT; Rudinsky MJ; Wood PM; Sesodia S; Bent M; Thomas CK
    J Neurosci Res; 2007 Jul; 85(9):1933-42. PubMed ID: 17492788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The physiology and biochemistry of skeletal muscle atrophy as a function of age.
    Carmeli E; Reznick AZ
    Proc Soc Exp Biol Med; 1994 Jun; 206(2):103-13. PubMed ID: 8208732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.