These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 12882815)

  • 1. Disruption of kinesin II function using a dominant negative-acting transgene in Xenopus laevis rods results in photoreceptor degeneration.
    Lin-Jones J; Parker E; Wu M; Knox BE; Burnside B
    Invest Ophthalmol Vis Sci; 2003 Aug; 44(8):3614-21. PubMed ID: 12882815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 221-bp fragment of the mouse opsin promoter directs expression specifically to the rod photoreceptors of transgenic mice.
    Quiambao AB; Peachey NS; Mangini NJ; Röhlich P; Hollyfield JG; al-Ubaidi MR
    Vis Neurosci; 1997; 14(4):617-25. PubMed ID: 9278991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Xenopus laevis red cone opsin and Prph2 promoters allow transgene expression in amphibian cones, or both rods and cones.
    Moritz OL; Peck A; Tam BM
    Gene; 2002 Oct; 298(2):173-82. PubMed ID: 12426105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cone survival despite rod degeneration in XOPS-mCFP transgenic zebrafish.
    Morris AC; Schroeter EH; Bilotta J; Wong RO; Fadool JM
    Invest Ophthalmol Vis Sci; 2005 Dec; 46(12):4762-71. PubMed ID: 16303977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transgenic expression of a GFP-rhodopsin COOH-terminal fusion protein in zebrafish rod photoreceptors.
    Perkins BD; Kainz PM; O'Malley DM; Dowling JE
    Vis Neurosci; 2002; 19(4):257R-264R. PubMed ID: 12511087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transgenic expression of a GFP-rhodopsin COOH-terminal fusion protein in zebrafish rod photoreceptors.
    Perkins BD; Kainz PM; O'Malley DM; Dowling JE
    Vis Neurosci; 2002; 19(3):257-64. PubMed ID: 12392175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescent photoreceptors of transgenic Xenopus laevis imaged in vivo by two microscopy techniques.
    Moritz OL; Tam BM; Knox BE; Papermaster DS
    Invest Ophthalmol Vis Sci; 1999 Dec; 40(13):3276-80. PubMed ID: 10586953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Xenopus laevis P23H rhodopsin transgene causes rod photoreceptor degeneration that is more severe in the ventral retina and is modulated by light.
    Zhang R; Oglesby E; Marsh-Armstrong N
    Exp Eye Res; 2008 Apr; 86(4):612-21. PubMed ID: 18291367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A functional rhodopsin-green fluorescent protein fusion protein localizes correctly in transgenic Xenopus laevis retinal rods and is expressed in a time-dependent pattern.
    Moritz OL; Tam BM; Papermaster DS; Nakayama T
    J Biol Chem; 2001 Jul; 276(30):28242-51. PubMed ID: 11350960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutant rab8 Impairs docking and fusion of rhodopsin-bearing post-Golgi membranes and causes cell death of transgenic Xenopus rods.
    Moritz OL; Tam BM; Hurd LL; Peränen J; Deretic D; Papermaster DS
    Mol Biol Cell; 2001 Aug; 12(8):2341-51. PubMed ID: 11514620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autophagy in
    Wen RH; Stanar P; Tam B; Moritz OL
    Autophagy; 2019 Nov; 15(11):1970-1989. PubMed ID: 30975014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct modulation of rod photoreceptor responsiveness through a Mel(1c) melatonin receptor in transgenic Xenopus laevis retina.
    Wiechmann AF; Vrieze MJ; Dighe R; Hu Y
    Invest Ophthalmol Vis Sci; 2003 Oct; 44(10):4522-31. PubMed ID: 14507901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential contribution of rod and cone circadian clocks in driving retinal melatonin rhythms in Xenopus.
    Hayasaka N; LaRue SI; Green CB
    PLoS One; 2010 Dec; 5(12):e15599. PubMed ID: 21187976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Does recombinant adeno-associated virus-vectored proximal region of mouse rhodopsin promoter support only rod-type specific expression in vivo?
    Glushakova LG; Timmers AM; Issa TM; Cortez NG; Pang J; Teusner JT; Hauswirth WW
    Mol Vis; 2006 Apr; 12():298-309. PubMed ID: 16617297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transgene expression in Xenopus rods.
    Knox BE; Schlueter C; Sanger BM; Green CB; Besharse JC
    FEBS Lett; 1998 Feb; 423(2):117-21. PubMed ID: 9512341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myosin 3A transgene expression produces abnormal actin filament bundles in transgenic Xenopus laevis rod photoreceptors.
    Lin-Jones J; Parker E; Wu M; Dosé A; Burnside B
    J Cell Sci; 2004 Nov; 117(Pt 24):5825-34. PubMed ID: 15522885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Connexin 36 in photoreceptor cells: studies on transgenic rod-less and cone-less mouse retinas.
    Dang L; Pulukuri S; Mears AJ; Swaroop A; Reese BE; Sitaramayya A
    Mol Vis; 2004 May; 10():323-7. PubMed ID: 15152186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport of truncated rhodopsin and its effects on rod function and degeneration.
    Lee ES; Flannery JG
    Invest Ophthalmol Vis Sci; 2007 Jun; 48(6):2868-76. PubMed ID: 17525223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human blue-opsin promoter preferentially targets reporter gene expression to rat s-cone photoreceptors.
    Glushakova LG; Timmers AM; Pang J; Teusner JT; Hauswirth WW
    Invest Ophthalmol Vis Sci; 2006 Aug; 47(8):3505-13. PubMed ID: 16877422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled rod cell ablation in transgenic Xenopus laevis.
    Hamm LM; Tam BM; Moritz OL
    Invest Ophthalmol Vis Sci; 2009 Feb; 50(2):885-92. PubMed ID: 18836175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.