These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 12882962)
21. Mechanistic studies on the pyridoxal phosphate enzyme 1-aminocyclopropane-1-carboxylate deaminase from Pseudomonas sp. Walsh C; Pascal RA; Johnston M; Raines R; Dikshit D; Krantz A; Honma M Biochemistry; 1981 Dec; 20(26):7509-19. PubMed ID: 7326243 [TBL] [Abstract][Full Text] [Related]
22. Structures of dCTP deaminase from Escherichia coli with bound substrate and product: reaction mechanism and determinants of mono- and bifunctionality for a family of enzymes. Johansson E; Fanø M; Bynck JH; Neuhard J; Larsen S; Sigurskjold BW; Christensen U; Willemoës M J Biol Chem; 2005 Jan; 280(4):3051-9. PubMed ID: 15539408 [TBL] [Abstract][Full Text] [Related]
23. Catalytic mechanism of the quinoenzyme amine oxidase from Escherichia coli: exploring the reductive half-reaction. Wilmot CM; Murray JM; Alton G; Parsons MR; Convery MA; Blakeley V; Corner AS; Palcic MM; Knowles PF; McPherson MJ; Phillips SE Biochemistry; 1997 Feb; 36(7):1608-20. PubMed ID: 9048544 [TBL] [Abstract][Full Text] [Related]
24. Structure of Escherichia coli tryptophanase. Ku SY; Yip P; Howell PL Acta Crystallogr D Biol Crystallogr; 2006 Jul; 62(Pt 7):814-23. PubMed ID: 16790938 [TBL] [Abstract][Full Text] [Related]
26. Structural basis for the catalytic activity of aspartate aminotransferase K258H lacking the pyridoxal 5'-phosphate-binding lysine residue. Malashkevich VN; Jäger J; Ziak M; Sauder U; Gehring H; Christen P; Jansonius JN Biochemistry; 1995 Jan; 34(2):405-14. PubMed ID: 7819232 [TBL] [Abstract][Full Text] [Related]
27. Role of Asp222 in the catalytic mechanism of Escherichia coli aspartate aminotransferase: the amino acid residue which enhances the function of the enzyme-bound coenzyme pyridoxal 5'-phosphate. Yano T; Kuramitsu S; Tanase S; Morino Y; Kagamiyama H Biochemistry; 1992 Jun; 31(25):5878-87. PubMed ID: 1610831 [TBL] [Abstract][Full Text] [Related]
28. Evolution of enzymatic activity in the enolase superfamily: structure of o-succinylbenzoate synthase from Escherichia coli in complex with Mg2+ and o-succinylbenzoate. Thompson TB; Garrett JB; Taylor EA; Meganathan R; Gerlt JA; Rayment I Biochemistry; 2000 Sep; 39(35):10662-76. PubMed ID: 10978150 [TBL] [Abstract][Full Text] [Related]
29. The imine-pyridine torsion of the pyridoxal 5'-phosphate Schiff base of aspartate aminotransferase lowers its pKa in the unliganded enzyme and is crucial for the successive increase in the pKa during catalysis. Hayashi H; Mizuguchi H; Kagamiyama H Biochemistry; 1998 Oct; 37(43):15076-85. PubMed ID: 9790670 [TBL] [Abstract][Full Text] [Related]
30. Mechanism of substrate recognition and PLP-induced conformational changes in LL-diaminopimelate aminotransferase from Arabidopsis thaliana. Watanabe N; Clay MD; van Belkum MJ; Cherney MM; Vederas JC; James MN J Mol Biol; 2008 Dec; 384(5):1314-29. PubMed ID: 18952095 [TBL] [Abstract][Full Text] [Related]
31. Conserved tyrosine-369 in the active site of Escherichia coli copper amine oxidase is not essential. Murray JM; Kurtis CR; Tambyrajah W; Saysell CG; Wilmot CM; Parsons MR; Phillips SE; Knowles PF; McPherson MJ Biochemistry; 2001 Oct; 40(43):12808-18. PubMed ID: 11669617 [TBL] [Abstract][Full Text] [Related]
32. A catalytic mechanism that explains a low catalytic activity of serine dehydratase like-1 from human cancer cells: crystal structure and site-directed mutagenesis studies. Yamada T; Komoto J; Kasuya T; Takata Y; Ogawa H; Mori H; Takusagawa F Biochim Biophys Acta; 2008 May; 1780(5):809-18. PubMed ID: 18342636 [TBL] [Abstract][Full Text] [Related]
33. Catalytic mechanism of S-adenosylhomocysteine hydrolase. Site-directed mutagenesis of Asp-130, Lys-185, Asp-189, and Asn-190. Takata Y; Yamada T; Huang Y; Komoto J; Gomi T; Ogawa H; Fujioka M; Takusagawa F J Biol Chem; 2002 Jun; 277(25):22670-6. PubMed ID: 11927587 [TBL] [Abstract][Full Text] [Related]
34. Identification of a novel pyridoxal 5'-phosphate binding site in adenosylcobalamin-dependent lysine 5,6-aminomutase from Porphyromonas gingivalis. Tang KH; Harms A; Frey PA Biochemistry; 2002 Jul; 41(27):8767-76. PubMed ID: 12093296 [TBL] [Abstract][Full Text] [Related]
35. Crystal structures of open and closed forms of d-serine deaminase from Salmonella typhimurium - implications on substrate specificity and catalysis. Bharath SR; Bisht S; Savithri HS; Murthy MR FEBS J; 2011 Aug; 278(16):2879-91. PubMed ID: 21668644 [TBL] [Abstract][Full Text] [Related]
36. Structural and mechanistic analysis of two refined crystal structures of the pyridoxal phosphate-dependent enzyme dialkylglycine decarboxylase. Toney MD; Hohenester E; Keller JW; Jansonius JN J Mol Biol; 1995 Jan; 245(2):151-79. PubMed ID: 7799433 [TBL] [Abstract][Full Text] [Related]
38. Identification of the reactive sulfhydryl group of 1-aminocyclopropane-1-carboxylate deaminase. Honma M; Kawai J; Yamada M Biosci Biotechnol Biochem; 1993 Dec; 57(12):2090-3. PubMed ID: 7764364 [TBL] [Abstract][Full Text] [Related]
39. Evolution of enzymatic activity in the enolase superfamily: functional studies of the promiscuous o-succinylbenzoate synthase from Amycolatopsis. Taylor Ringia EA; Garrett JB; Thoden JB; Holden HM; Rayment I; Gerlt JA Biochemistry; 2004 Jan; 43(1):224-9. PubMed ID: 14705949 [TBL] [Abstract][Full Text] [Related]
40. Crystal structures of 1-aminocyclopropane-1-carboxylate (ACC) synthase in complex with aminoethoxyvinylglycine and pyridoxal-5'-phosphate provide new insight into catalytic mechanisms. Huai Q; Xia Y; Chen Y; Callahan B; Li N; Ke H J Biol Chem; 2001 Oct; 276(41):38210-6. PubMed ID: 11431475 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]