BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

676 related articles for article (PubMed ID: 12883174)

  • 41. Newly developed Sr-substituted alpha-TCP bone cements.
    Pina S; Torres PM; Goetz-Neunhoeffer F; Neubauer J; Ferreira JM
    Acta Biomater; 2010 Mar; 6(3):928-35. PubMed ID: 19733700
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nano-beta-tricalcium phosphates synthesis and biodegradation: 2. Biodegradation and apatite layer formation on nabo-β-TCP synthesized via microwave treatment.
    Abdel-Fattah WI; Elkhooly TA
    Biomed Mater; 2010 Jun; 5(3):35015. PubMed ID: 20526025
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Formation of a FGF-2 and calcium phosphate composite layer on a hydroxyapatite ceramic for promoting bone formation.
    Sogo Y; Ito A; Onoguchi M; Oyane A; Tsurushima H; Ichinose N
    Biomed Mater; 2007 Sep; 2(3):S175-80. PubMed ID: 18458464
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Formation of osteoclast-like cells on HA and TCP ceramics.
    Detsch R; Mayr H; Ziegler G
    Acta Biomater; 2008 Jan; 4(1):139-48. PubMed ID: 17723325
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Apatite-forming ability of pure titanium implant after micro-arc oxidation treatment].
    Tian Z; Zhang Y; Wang L; Nan K
    Nan Fang Yi Ke Da Xue Xue Bao; 2013 Oct; 33(10):1554-6. PubMed ID: 24144769
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development of a strontium-containing hydroxyapatite bone cement.
    Guo D; Xu K; Zhao X; Han Y
    Biomaterials; 2005 Jul; 26(19):4073-83. PubMed ID: 15664634
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Surface reactions of calcium phosphate ceramics to various solutions.
    Hyakuna K; Yamamuro T; Kotoura Y; Oka M; Nakamura T; Kitsugi T; Kokubo T; Kushitani H
    J Biomed Mater Res; 1990 Apr; 24(4):471-88. PubMed ID: 2347873
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Calcium phosphate apatites with variable Ca/P atomic ratio III. Mechanical properties and degradation in solution of hot pressed ceramics.
    Raynaud S; Champion E; Lafon JP; Bernache-Assollant D
    Biomaterials; 2002 Feb; 23(4):1081-9. PubMed ID: 11791911
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Influence of saline solution on hydration behavior of β-dicalcium silicate in comparison with biphasic calcium phosphate/hydroxyapatite bio-ceramics.
    Radwan MM; Abd El-Hamid HK; Mohamed AF
    Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():355-62. PubMed ID: 26354276
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fabrication and evaluation of a pulse laser-induced Ca-P coating on a Ti alloy for bioapplication.
    Paital SR; Balani K; Agarwal A; Dahotre NB
    Biomed Mater; 2009 Feb; 4(1):015009. PubMed ID: 19020344
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Novel sphene coatings on Ti-6Al-4V for orthopedic implants using sol-gel method.
    Wu C; Ramaswamy Y; Gale D; Yang W; Xiao K; Zhang L; Yin Y; Zreiqat H
    Acta Biomater; 2008 May; 4(3):569-76. PubMed ID: 18182336
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Wettability and kinetics of hydroxyapatite precipitation on a laser-textured Ca-P bioceramic coating.
    Paital SR; Dahotre NB
    Acta Biomater; 2009 Sep; 5(7):2763-72. PubMed ID: 19362524
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mechanism of apatite formation on pure titanium treated with alkaline solution.
    Wang CX; Zhou X; Wang M
    Biomed Mater Eng; 2004; 14(1):5-11. PubMed ID: 14757948
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterisation of a duplex TiO2/CaP coating on Ti6Al4V for hard tissue replacement.
    Ng BS; Annergren I; Soutar AM; Khor KA; Jarfors AE
    Biomaterials; 2005 Apr; 26(10):1087-95. PubMed ID: 15451628
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Surface characterisation of various bone cements prepared with functionalised methacrylates/bioactive ceramics in relation to HOB behaviour.
    Salih V; Mordan N; Abou Neel EA; Armitage DA; Jones FH; Knowles JC; Nazhat SN; Vargas-Coronado R; Cauich-Rodriguez JV
    Acta Biomater; 2006 Mar; 2(2):143-54. PubMed ID: 16701872
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Proliferation and differentiation of cultured MC3T3-E1 osteoblasts on surface-layer modified hydroxyapatite ceramic with acid and heat treatments.
    Yuasa T; Miyamoto Y; Kon M; Ishikawa K; Takechi M; Momota Y; Tatehara S; Takano H; Mimamiguchi S; Nagayama M
    Dent Mater J; 2005 Jun; 24(2):207-12. PubMed ID: 16022440
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The chemical composition of synthetic bone substitutes influences tissue reactions in vivo: histological and histomorphometrical analysis of the cellular inflammatory response to hydroxyapatite, beta-tricalcium phosphate and biphasic calcium phosphate ceramics.
    Ghanaati S; Barbeck M; Detsch R; Deisinger U; Hilbig U; Rausch V; Sader R; Unger RE; Ziegler G; Kirkpatrick CJ
    Biomed Mater; 2012 Feb; 7(1):015005. PubMed ID: 22287541
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bioactive PMMA bone cement prepared by modification with methacryloxypropyltrimethoxysilane and calcium chloride.
    Miyazaki T; Ohtsuki C; Kyomoto M; Tanihara M; Mori A; Kuramoto K
    J Biomed Mater Res A; 2003 Dec; 67(4):1417-23. PubMed ID: 14624530
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Silicon-stabilized α-tricalcium phosphate and its use in a calcium phosphate cement: characterization and cell response.
    Mestres G; Le Van C; Ginebra MP
    Acta Biomater; 2012 Mar; 8(3):1169-79. PubMed ID: 22154863
    [TBL] [Abstract][Full Text] [Related]  

  • 60. 3D microenvironment as essential element for osteoinduction by biomaterials.
    Habibovic P; Yuan H; van der Valk CM; Meijer G; van Blitterswijk CA; de Groot K
    Biomaterials; 2005 Jun; 26(17):3565-75. PubMed ID: 15621247
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 34.