These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

676 related articles for article (PubMed ID: 12883174)

  • 81. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility.
    Verné E; Bruno M; Miola M; Maina G; Bianco C; Cochis A; Rimondini L
    Mater Sci Eng C Mater Biol Appl; 2015 Aug; 53():95-103. PubMed ID: 26042695
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Apatite formation on the surface of wollastonite/tricalcium phosphate composite immersed in simulated body fluid.
    Huang X; Jiang D; Tan S
    J Biomed Mater Res B Appl Biomater; 2004 Apr; 69(1):70-2. PubMed ID: 15015212
    [TBL] [Abstract][Full Text] [Related]  

  • 83. In vivo response of porous hydroxyapatite and beta-tricalcium phosphate prepared by aqueous solution combustion method and comparison with bioglass scaffolds.
    Ghosh SK; Nandi SK; Kundu B; Datta S; De DK; Roy SK; Basu D
    J Biomed Mater Res B Appl Biomater; 2008 Jul; 86(1):217-27. PubMed ID: 18161811
    [TBL] [Abstract][Full Text] [Related]  

  • 84. The mechanism of biomineralization of bone-like apatite on synthetic hydroxyapatite: an in vitro assessment.
    Kim HM; Himeno T; Kawashita M; Kokubo T; Nakamura T
    J R Soc Interface; 2004 Nov; 1(1):17-22. PubMed ID: 16849149
    [TBL] [Abstract][Full Text] [Related]  

  • 85. [A study on alpha-tricalcium phosphate bone cement carbon fiber-reinforced].
    Wu W; Yang W; Zhou D; Ma J; Xiao B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Jun; 23(3):569-72. PubMed ID: 16856391
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Evaluation of ceramics composed of different hydroxyapatite to tricalcium phosphate ratios as carriers for rhBMP-2.
    Alam MI; Asahina I; Ohmamiuda K; Takahashi K; Yokota S; Enomoto S
    Biomaterials; 2001 Jun; 22(12):1643-51. PubMed ID: 11374466
    [TBL] [Abstract][Full Text] [Related]  

  • 87. In vitro characterization of polyvinyl alcohol assisted hydroxyapatite derived by sol-gel method.
    Kaygili O; Keser S; Al Orainy RH; Ates T; Yakuphanoglu F
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():239-44. PubMed ID: 24411374
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Mechanical properties and in vitro bioactivity of Ca5(PO4)2SiO4 bioceramic.
    Lu W; Duan W; Guo Y; Ning C
    J Biomater Appl; 2012 Feb; 26(6):637-50. PubMed ID: 20876633
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Phase formation and evolution in the silicon substituted tricalcium phosphate/apatite system.
    Reid JW; Pietak A; Sayer M; Dunfield D; Smith TJ
    Biomaterials; 2005 Jun; 26(16):2887-97. PubMed ID: 15603784
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Effect of phosphorous ion implantation on the mechanical properties and bioactivity of hydroxyapatite.
    Kobayashi S; Muramatsu T; Teranishi Y
    J Mater Sci Mater Med; 2015 Jan; 26(1):5351. PubMed ID: 25578705
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Transformations in CDHA/OCP/beta-TCP scaffold during ageing in simulated body fluid at 36.5 degrees C.
    Morejón-Alonso L; Carrodeguas RG; García-Menocal JA
    J Biomed Mater Res B Appl Biomater; 2008 Feb; 84(2):386-93. PubMed ID: 17937405
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Study of the reactivity and in vitro bioactivity of Sr-substituted alpha-TCP cements.
    Saint-Jean SJ; Camiré CL; Nevsten P; Hansen S; Ginebra MP
    J Mater Sci Mater Med; 2005 Nov; 16(11):993-1001. PubMed ID: 16388381
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Biocompatibility of pure and mixed hydroxyapatite and α-tricalcium phosphate implanted in rabbit bone.
    Vamze J; Pilmane M; Skagers A
    J Mater Sci Mater Med; 2015 Feb; 26(2):73. PubMed ID: 25631269
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Preparation, characterization and in vitro dissolution behavior of porous biphasic α/β-tricalcium phosphate bioceramics.
    Xie L; Yu H; Deng Y; Yang W; Liao L; Long Q
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():1007-1015. PubMed ID: 26652459
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Using calcium silicate to regulate the physicochemical and biological properties when using β-tricalcium phosphate as bone cement.
    Kao CT; Huang TH; Chen YJ; Hung CJ; Lin CC; Shie MY
    Mater Sci Eng C Mater Biol Appl; 2014 Oct; 43():126-34. PubMed ID: 25175197
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Development of bioactive porous α-TCP/HAp beads for bone tissue engineering.
    Asaoka T; Ohtake S; Furukawa KS; Tamura A; Ushida T
    J Biomed Mater Res A; 2013 Nov; 101(11):3295-300. PubMed ID: 23983180
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Bioactivity of degradable polymer sutures coated with bioactive glass.
    Bretcanu O; Verné E; Borello L; Boccaccini AR
    J Mater Sci Mater Med; 2004 Aug; 15(8):893-9. PubMed ID: 15477741
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Comparative study of biphasic calcium phosphate ceramics impregnated with rhBMP-2 as bone substitutes.
    Alam I; Asahina I; Ohmamiuda K; Enomoto S
    J Biomed Mater Res; 2001 Jan; 54(1):129-38. PubMed ID: 11077412
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Laser surface treatment for porous and textured Ca-P bio-ceramic coating on Ti-6Al-4V.
    Paital SR; Dahotre NB
    Biomed Mater; 2007 Dec; 2(4):274-81. PubMed ID: 18458486
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Sintering of biphasic calcium phosphates.
    Brown O; McAfee M; Clarke S; Buchanan F
    J Mater Sci Mater Med; 2010 Aug; 21(8):2271-9. PubMed ID: 20232235
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 34.