BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 1288332)

  • 1. F-type ATPases: are nucleotide domains in adenylate kinase appropriate models for nucleotide domains in ATP synthase/ATPase complexes?
    Pedersen PL; Thomas PJ; Garboczi DN; Bianchet M; Amzel LM
    Ann N Y Acad Sci; 1992 Nov; 671():359-65. PubMed ID: 1288332
    [No Abstract]   [Full Text] [Related]  

  • 2. Correlations of structure and function in H+ translocating subunit c of F1F0 ATP synthase.
    Fillingame RH; Girvin ME; Fraga D; Zhang Y
    Ann N Y Acad Sci; 1992 Nov; 671():323-33; discussion 333-4. PubMed ID: 1288329
    [No Abstract]   [Full Text] [Related]  

  • 3. A model for the catalytic site of F1-ATPase based on analogies to nucleotide-binding domains of known structure.
    Duncan TM; Cross RL
    J Bioenerg Biomembr; 1992 Oct; 24(5):453-61. PubMed ID: 1429539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beta subunit of rat liver mitochondrial ATP synthase: cDNA cloning, amino acid sequence, expression in Escherichia coli, and structural relationship to adenylate kinase.
    Garboczi DN; Fox AH; Gerring SL; Pedersen PL
    Biochemistry; 1988 Jan; 27(2):553-60. PubMed ID: 2894849
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence of subunit c of the Na(+)-translocating F1F0 ATPase of Acetobacterium woodii: proposal for determinants of Na+ specificity as revealed by sequence comparisons.
    Rahlfs S; Müller V
    FEBS Lett; 1997 Mar; 404(2-3):269-71. PubMed ID: 9119076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. F0 and F1 subunits involved in the gate and coupling function of mitochondrial H+ ATP synthase.
    Papa S; Guerrieri F; Zanotti F; Capozza G; Fiermonte M; Cocco T; Altendorf K; Deckers-Hebersteit G
    Ann N Y Acad Sci; 1992 Nov; 671():345-58. PubMed ID: 1288331
    [No Abstract]   [Full Text] [Related]  

  • 7. A structure-based model for the 16 kDa membrane sector of the vacuolar H(+)-ATPase.
    Findlay JB; Finbow ME; Jones PC; Kim YI; Harrison MA; Hughes G
    Biochem Soc Trans; 1997 Aug; 25(3):1107-13. PubMed ID: 9388608
    [No Abstract]   [Full Text] [Related]  

  • 8. Transmembrane topology of Escherichia coli H(+)-ATPase (ATP synthase) subunit a.
    Yamada H; Moriyama Y; Maeda M; Futai M
    FEBS Lett; 1996 Jul; 390(1):34-8. PubMed ID: 8706824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and properties of the coated vesicle proton pump.
    Forgac M
    Ann N Y Acad Sci; 1992 Nov; 671():273-83. PubMed ID: 1288324
    [No Abstract]   [Full Text] [Related]  

  • 10. Structure and function of the yeast plasma-membrane H(+)-ATPase.
    Rao R; Nakamoto RK; Verjovski-Almeida S; Slayman CW
    Ann N Y Acad Sci; 1992 Nov; 671():195-203. PubMed ID: 1288321
    [No Abstract]   [Full Text] [Related]  

  • 11. F-type or V-type? The chimeric nature of the archaebacterial ATP synthase.
    Schäfer G; Meyering-Vos M
    Biochim Biophys Acta; 1992 Jul; 1101(2):232-5. PubMed ID: 1385979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. F1-ATPase structure: getting our bearings for ATP synthesis.
    Barber J
    Structure; 1994 Sep; 2(9):889-90. PubMed ID: 7812720
    [No Abstract]   [Full Text] [Related]  

  • 13. ATP synthases. Structure, reaction center, mechanism, and regulation of one of nature's most unique machines.
    Pedersen PL; Amzel LM
    J Biol Chem; 1993 May; 268(14):9937-40. PubMed ID: 8486720
    [No Abstract]   [Full Text] [Related]  

  • 14. Cloning and functional expression analysis of the alpha subunit of mouse ATP synthase.
    Yotov WV; St-Arnaud R
    Biochem Biophys Res Commun; 1993 Feb; 191(1):142-8. PubMed ID: 7916601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of the catalytic nucleotide-binding subunit A of A-type ATP synthase from Pyrococcus horikoshii reveals a novel domain related to the peripheral stalk.
    Maegawa Y; Morita H; Iyaguchi D; Yao M; Watanabe N; Tanaka I
    Acta Crystallogr D Biol Crystallogr; 2006 May; 62(Pt 5):483-8. PubMed ID: 16627940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Primary structural constraints of P-loop of mitochondrial F1-ATPase from yeast.
    Shen H; Yao BY; Mueller DM
    J Biol Chem; 1994 Apr; 269(13):9424-8. PubMed ID: 8144526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The gamma-subunit rotation and torque generation in F1-ATPase from wild-type or uncoupled mutant Escherichia coli.
    Omote H; Sambonmatsu N; Saito K; Sambongi Y; Iwamoto-Kihara A; Yanagida T; Wada Y; Futai M
    Proc Natl Acad Sci U S A; 1999 Jul; 96(14):7780-4. PubMed ID: 10393898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New insights into one of nature's remarkable catalysts, the ATP synthase.
    Boyer PD
    Mol Cell; 2001 Aug; 8(2):246-7. PubMed ID: 11545726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dissection of the epsilon subunit of the chloroplast ATP synthase of spinach.
    Cruz JA; Harfe B; Radkowski CA; Dann MS; McCarty RE
    Plant Physiol; 1995 Dec; 109(4):1379-88. PubMed ID: 8539297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATP-binding site of adenylate kinase: mechanistic implications of its homology with ras-encoded p21, F1-ATPase, and other nucleotide-binding proteins.
    Fry DC; Kuby SA; Mildvan AS
    Proc Natl Acad Sci U S A; 1986 Feb; 83(4):907-11. PubMed ID: 2869483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.