These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Enhancing synaptic plasticity and memory: a role for small-conductance Ca(2+)-activated K+ channels. Tzounopoulos T; Stackman R Neuroscientist; 2003 Dec; 9(6):434-9. PubMed ID: 14678575 [TBL] [Abstract][Full Text] [Related]
4. Altered expression of small-conductance Ca2+-activated K+ (SK3) channels modulates arterial tone and blood pressure. Taylor MS; Bonev AD; Gross TP; Eckman DM; Brayden JE; Bond CT; Adelman JP; Nelson MT Circ Res; 2003 Jul; 93(2):124-31. PubMed ID: 12805243 [TBL] [Abstract][Full Text] [Related]
5. Impaired interleukin-1 signaling is associated with deficits in hippocampal memory processes and neural plasticity. Avital A; Goshen I; Kamsler A; Segal M; Iverfeldt K; Richter-Levin G; Yirmiya R Hippocampus; 2003; 13(7):826-34. PubMed ID: 14620878 [TBL] [Abstract][Full Text] [Related]
6. Impaired long-term memory and long-term potentiation in N-type Ca2+ channel-deficient mice. Jeon D; Kim C; Yang YM; Rhim H; Yim E; Oh U; Shin HS Genes Brain Behav; 2007 Jun; 6(4):375-88. PubMed ID: 16939638 [TBL] [Abstract][Full Text] [Related]
7. Cortistatin overexpression in transgenic mice produces deficits in synaptic plasticity and learning. Tallent MK; Fabre V; Qiu C; Calbet M; Lamp T; Baratta MV; Suzuki C; Levy CL; Siggins GR; Henriksen SJ; Criado JR; Roberts A; de Lecea L Mol Cell Neurosci; 2005 Nov; 30(3):465-75. PubMed ID: 16182561 [TBL] [Abstract][Full Text] [Related]
8. SK channels are necessary but not sufficient for denervation-induced hyperexcitability. Jacobson D; Herson PS; Neelands TR; Maylie J; Adelman JP Muscle Nerve; 2002 Dec; 26(6):817-22. PubMed ID: 12451607 [TBL] [Abstract][Full Text] [Related]
9. Comparative immunohistochemical distribution of three small-conductance Ca2+-activated potassium channel subunits, SK1, SK2, and SK3 in mouse brain. Sailer CA; Kaufmann WA; Marksteiner J; Knaus HG Mol Cell Neurosci; 2004 Jul; 26(3):458-69. PubMed ID: 15234350 [TBL] [Abstract][Full Text] [Related]
10. Expression of the small conductance Ca2+-activated K+ channel, SK3, in the olfactory ensheathing glial cells of rat brain. Fujita A; Takeuchi T; Hanai J; Hata F Cell Tissue Res; 2003 Aug; 313(2):187-93. PubMed ID: 12883996 [TBL] [Abstract][Full Text] [Related]
11. Mouse models of impaired fear memory exhibit deficits in amygdalar LTP. Schimanski LA; Nguyen PV Hippocampus; 2005; 15(4):502-17. PubMed ID: 15744733 [TBL] [Abstract][Full Text] [Related]
12. Novel truncated isoform of SK3 potassium channel is a potent dominant-negative regulator of SK currents: implications in schizophrenia. Tomita H; Shakkottai VG; Gutman GA; Sun G; Bunney WE; Cahalan MD; Chandy KG; Gargus JJ Mol Psychiatry; 2003 May; 8(5):524-35, 460. PubMed ID: 12808432 [TBL] [Abstract][Full Text] [Related]
13. Characterization of the outer pore region of the apamin-sensitive Ca2+-activated K+ channel rSK2. Jäger H; Grissmer S Toxicon; 2004 Jun; 43(8):951-60. PubMed ID: 15208028 [TBL] [Abstract][Full Text] [Related]
14. Kv7/KCNQ/M and HCN/h, but not KCa2/SK channels, contribute to the somatic medium after-hyperpolarization and excitability control in CA1 hippocampal pyramidal cells. Gu N; Vervaeke K; Hu H; Storm JF J Physiol; 2005 Aug; 566(Pt 3):689-715. PubMed ID: 15890705 [TBL] [Abstract][Full Text] [Related]
15. Kit-negative fibroblast-like cells expressing SK3, a Ca2+-activated K+ channel, in the gut musculature in health and disease. Vanderwinden JM; Rumessen JJ; de Kerchove d'Exaerde A; Gillard K; Panthier JJ; de Laet MH; Schiffmann SN Cell Tissue Res; 2002 Dec; 310(3):349-58. PubMed ID: 12457234 [TBL] [Abstract][Full Text] [Related]
16. SK channels: a new twist to synaptic plasticity. Narasimhan K Nat Neurosci; 2005 May; 8(5):550. PubMed ID: 15856059 [No Abstract] [Full Text] [Related]
17. SK channels regulate excitatory synaptic transmission and plasticity in the lateral amygdala. Faber ES; Delaney AJ; Sah P Nat Neurosci; 2005 May; 8(5):635-41. PubMed ID: 15852010 [TBL] [Abstract][Full Text] [Related]
18. Decreased calcium/calmodulin-dependent protein kinase II and protein kinase C activities mediate impairment of hippocampal long-term potentiation in the olfactory bulbectomized mice. Moriguchi S; Han F; Nakagawasai O; Tadano T; Fukunaga K J Neurochem; 2006 Apr; 97(1):22-9. PubMed ID: 16515554 [TBL] [Abstract][Full Text] [Related]
19. Synapse specificity of long-term potentiation breaks down with aging. Ris L; Godaux E Learn Mem; 2007 Mar; 14(3):185-9. PubMed ID: 17351142 [TBL] [Abstract][Full Text] [Related]
20. Two pathways for the activation of small-conductance potassium channels in neurons of substantia nigra pars reticulata. Yanovsky Y; Zhang W; Misgeld U Neuroscience; 2005; 136(4):1027-36. PubMed ID: 16203104 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]